金属锂负极及其制备方法和应用

    公开(公告)号:CN114242953B

    公开(公告)日:2023-07-21

    申请号:CN202111581486.9

    申请日:2021-12-22

    Abstract: 本发明公开了一种金属锂负极及其制备方法和应用,包括以下步骤:S1、将含氟或/和含氯高分子化合物溶解在溶剂中,得到反应溶液,其中,所述溶剂为含有酰胺基和/或醛基的化合物;S2、将反应溶液均匀涂敷在金属锂表面反应0.5-30min,得到表面具有钝化层的金属锂负极。本发明的含氟、氯高分子在溶剂的作用下与金属锂发生快速反应,在金属锂表面快速形成氟化锂或氯化锂钝化层,可在最短0.5min内实现完全制备过程,同时,本发明利用未反应的高分子在最外层形成包裹保护作用,由此有效地阻挡了金属锂和电解液的直接接触,提高了锂金属电池的电化学性能,本发明的制备方法具有制备工艺简单、制备成本低、工艺耗时少、钝化层厚度易控制等优点,更适合工业化生产。

    金属锂负极及其制备方法和应用

    公开(公告)号:CN114242953A

    公开(公告)日:2022-03-25

    申请号:CN202111581486.9

    申请日:2021-12-22

    Abstract: 本发明公开了一种金属锂负极及其制备方法和应用,包括以下步骤:S1、将含氟或/和含氯高分子化合物溶解在溶剂中,得到反应溶液,其中,所述溶剂为含有酰胺基和/或醛基的化合物;S2、将反应溶液均匀涂敷在金属锂表面反应0.5-30min,得到表面具有钝化层的金属锂负极。本发明的含氟、氯高分子在溶剂的作用下与金属锂发生快速反应,在金属锂表面快速形成氟化锂或氯化锂钝化层,可在最短0.5min内实现完全制备过程,同时,本发明利用未反应的高分子在最外层形成包裹保护作用,由此有效地阻挡了金属锂和电解液的直接接触,提高了锂金属电池的电化学性能,本发明的制备方法具有制备工艺简单、制备成本低、工艺耗时少、钝化层厚度易控制等优点,更适合工业化生产。

    一种氟化凝胶电解质及其制备方法

    公开(公告)号:CN114824462A

    公开(公告)日:2022-07-29

    申请号:CN202210396664.9

    申请日:2022-04-15

    Abstract: 本发明涉及一种氟化凝胶电解质及其制备方法,属于凝胶聚合物电解质技术领域。所述电解质由聚偏氟乙烯‑六氟丙烯膜和电解液组成;所述电解液由锂盐和有机溶剂组成;所述有机溶剂由有机溶剂I和有机溶剂II按照体积比为(1~3):1组成;所述有机溶剂I为碳酸二乙酯或碳酸甲乙酯;所述有机溶剂II为氟代碳酸乙烯酯。所述电解质由如下方法制得:将锂盐完全溶解于有机溶剂中,得到电解液;再将聚偏氟乙烯‑六氟丙烯膜在所述电解液中浸泡12h~36h,得到所述氟化凝胶电解质。所述电解质具有高电化学窗口、高离子电导率,可实现室温下与高镍正极的匹配以及稳定的电化学循环;所述方法简单,成本低,易于规模化制备。

    一种3D打印高能量密度固态锂离子电池及其制备方法

    公开(公告)号:CN117996210A

    公开(公告)日:2024-05-07

    申请号:CN202410182938.3

    申请日:2024-02-19

    Abstract: 本发明公开了一种3D打印高能量密度固态锂离子电池及其制备方法,包括如下步骤:A、制备正极打印墨水和负极打印墨水;B、制备电子导体支撑层打印墨水和电解质打印墨水;C、在基板上打印得到打印正极,在打印正极的表面打印得到电子导体支撑层;D、在打印正极的非电子导体支撑层表面上打印得到电解质层,再先后打印得到打印负极和电子导体支撑层;E、真空干燥后组装形成固态锂离子电池。本发明在电极表面修饰制备一层自支撑导电层,从而省去集流体,减少了电池的重量和体积,提高了电池的能量密度和固固界面稳定性,降低了电池内阻,提升了电池大电流放电能力和循环寿命。

    一种对叔丁基砜桥硫代杯[4]芳烃及其分离纯化铯的方法

    公开(公告)号:CN104193724A

    公开(公告)日:2014-12-10

    申请号:CN201410325834.X

    申请日:2014-07-09

    CPC classification number: Y02P10/234 C07D341/00 C22B26/10

    Abstract: 核燃料在反应堆中使用后,即成为“乏燃料”,乏燃料中的高释热元素137Cs需要经历很长时间才能衰变至无害水平,因此需要对其进行萃取分离。现有技术中传统的萃取剂TBP由于在受辐射时易发生部分降解而影响萃取效果,因此不适合用于乏燃料的后处理。杯芳烃尤其是其中的硫代杯芳烃,相比于普通杯芳烃,除了具有较高的辐照稳定性、化学稳定性和热稳定性,硫代杯芳烃结构的刚性、极性都发生了较大的变化,更易于化学改性和修饰。桥连硫原子的砜化和亚砜化,改善了硫代杯芳烃母体结构,从而能够在酸性介质中萃取分离金属离子,特别适合我国的乏燃料后处理状态。为了克服上述现有技术的不足,本发明提供了一种对叔丁基砜桥硫代杯[4]芳烃及其分离纯化铯的方法,萃取效率较高,并且分离的铯具有较高的纯度。

    一种数字孪生系统的建立方法

    公开(公告)号:CN117313183A

    公开(公告)日:2023-12-29

    申请号:CN202311594539.X

    申请日:2023-11-28

    Abstract: 本发明公开了一种数字孪生系统的建立方法,包括:对各子系统三维建模,结合各部件的物理特性,开展三维高精度数值模拟;利用历史试验数据对数值模拟进行验证,提升数值模拟精度;对模拟结果与试验数据进行数据融合,获得全三维的、高精度的流场数据;对各子系统开展快速预测模型建模工作;搭建数字孪生系统;对数据进行融合订正,改进数字孪生模型,并及时存储;配备大屏幕显示,支持远程登录和查看;配有防火墙,提供用户登录界面、编程窗口和数据备份功能。本发明可实现结冰风洞和气候室的可视化,能加快结冰风洞的参数调试,对结冰结果进行快速预测;能对系统部件进行健康监测以及寿命预测;还能对极端运行工况进行试验结果预测。

Patent Agency Ranking