一种医学图像分割方法、装置、设备及存储介质

    公开(公告)号:CN115409990B

    公开(公告)日:2023-06-16

    申请号:CN202211188150.0

    申请日:2022-09-28

    Abstract: 本公开提供了一种医学图像分割方法、装置、设备及存储介质,所述方法包括:将待分割医学图像输入预先训练的目标图像分割模型,第一残差特征提取层提取第一残差特征,第二残差特征提取层对第一残差特征提取第二残差特征,语义特征提取层对第一残差特征提取语义特征,特征融合层对第二残差特征和语义特征进行融合得到融合特征,结果输出层基于融合特征提取待分割医学图像中目标器官的器官区域图像,以及确定目标器官的器官类别,并输出器官区域图像和器官类别。采用该方法,使得医学检测仪器可以利用器官区域图像在更精确的区域检测的同时,也可以在器官对应的检测模式下进行检测,提高了检测结果准确率,从而达到了更好的辅助检查效果。

    一种多模态图像分类模型训练方法、装置及电子设备

    公开(公告)号:CN114758360B

    公开(公告)日:2023-04-18

    申请号:CN202210435881.4

    申请日:2022-04-24

    Abstract: 本公开提供了一种多模态图像分类模型训练方法、装置及电子设备,包括:确认训练图像集;将训练图像集中的第一超声图像和第一超声造影图像输入至多模态图像分类模型包括的图像序列化模块和特征提取模块中,获得第一超声图像对应的第一特征编码集合和第一超声造影图像对应的第二特征编码集合;将第一特征编码集合和第二特征编码集合输入至多模态图像分类模型包括的多模态聚合模块中,获得第一超声图像和第一超声造影图像对应的分类预测结果;基于第一超声图像和所述第一超声造影图像对应的分类标注结果与分类预测结果之间的差异,调整多模态图像分类模型的参数;其中,所述多模态聚合模块包括多头自注意力层和多层感知机。

    一种医学图像分割方法、装置、设备及存储介质

    公开(公告)号:CN115409990A

    公开(公告)日:2022-11-29

    申请号:CN202211188150.0

    申请日:2022-09-28

    Abstract: 本公开提供了一种医学图像分割方法、装置、设备及存储介质,所述方法包括:将待分割医学图像输入预先训练的目标图像分割模型,第一残差特征提取层提取第一残差特征,第二残差特征提取层对第一残差特征提取第二残差特征,语义特征提取层对第一残差特征提取语义特征,特征融合层对第二残差特征和语义特征进行融合得到融合特征,结果输出层基于融合特征提取待分割医学图像中目标器官的器官区域图像,以及确定目标器官的器官类别,并输出器官区域图像和器官类别。采用该方法,使得医学检测仪器可以利用器官区域图像在更精确的区域检测的同时,也可以在器官对应的检测模式下进行检测,提高了检测结果准确率,从而达到了更好的辅助检查效果。

    一种针对超声切面的检测方法、装置及计算机可读介质

    公开(公告)号:CN114881937B

    公开(公告)日:2022-12-09

    申请号:CN202210397848.7

    申请日:2022-04-15

    Abstract: 本发明实施例提供一种针对超声切面的检测方法及装置,该方法首先将第一标准超声切面图像与第二标准超声切面图像组合形成正样本对;将第一标准超声切面图像与M个异常超声切面图像中任一异常超声切面图像组合形成负样本对,得到M个负样本对;将正样本对和M个负样本对共同作为训练样本;然后对正样本对和负样本对进行特征提取处理,得到第一特征向量、第二特征向量、以及M个异常切面特征向量;之后基于正样本对的相似度,以及每个负样本对的相似度,进行自监督的对比学习得到损失函数;最后对模型参数进行迭代更新,当对损失函数趋于最小时,得到超声切面检测模型。由此能够提高模型训练的准确性,进而有利于对异常超声切面图像进行准确检测。

    一种多模态图像分类模型训练方法、装置及电子设备

    公开(公告)号:CN114758360A

    公开(公告)日:2022-07-15

    申请号:CN202210435881.4

    申请日:2022-04-24

    Abstract: 本公开提供了一种多模态图像分类模型训练方法、装置及电子设备,包括:确认训练图像集;将训练图像集中的第一超声图像和第一超声造影图像输入至多模态图像分类模型包括的图像序列化模块和特征提取模块中,获得第一超声图像对应的第一特征编码集合和第一超声造影图像对应的第二特征编码集合;将第一特征编码集合和第二特征编码集合输入至多模态图像分类模型包括的多模态聚合模块中,获得第一超声图像和第一超声造影图像对应的分类预测结果;基于第一超声图像和所述第一超声造影图像对应的分类标注结果与分类预测结果之间的差异,调整多模态图像分类模型的参数;其中,所述多模态聚合模块包括多头自注意力层和多层感知机。

    一种针对超声切面的检测方法、装置及计算机可读介质

    公开(公告)号:CN114881937A

    公开(公告)日:2022-08-09

    申请号:CN202210397848.7

    申请日:2022-04-15

    Abstract: 本发明实施例提供一种针对超声切面的检测方法及装置,该方法首先将第一标准超声切面图像与第二标准超声切面图像组合形成正样本对;将第一标准超声切面图像与M个异常超声切面图像中任一异常超声切面图像组合形成负样本对,得到M个负样本对;将正样本对和M个负样本对共同作为训练样本;然后对正样本对和负样本对进行特征提取处理,得到第一特征向量、第二特征向量、以及M个异常切面特征向量;之后基于正样本对的相似度,以及每个负样本对的相似度,进行自监督的对比学习得到损失函数;最后对模型参数进行迭代更新,当对损失函数趋于最小时,得到超声切面检测模型。由此能够提高模型训练的准确性,进而有利于对异常超声切面图像进行准确检测。

Patent Agency Ranking