-
公开(公告)号:CN108154080B
公开(公告)日:2020-09-01
申请号:CN201711205432.6
申请日:2017-11-27
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06K9/00
Abstract: 本发明提供了一种视频设备快速溯源的方法,该方法通过获取每个设备相机的一段视频,通过处理视频并且计算视频的相机指纹特征的方式计算出相机特征,建立数据库,每一部设备有自己独立的相机特征。同样方式计算待测视频的相机特征值,通过计算这个值与相机特征数据库中的特征值相关性来判断这个视频来自于哪部设备。本发明利用了相机指纹这种难以被修改和伪造的设备物理硬件特征在计算过程中以迭代处理,采用多种高效的识别方法实现设备高效溯源。
-
公开(公告)号:CN108154080A
公开(公告)日:2018-06-12
申请号:CN201711205432.6
申请日:2017-11-27
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06K9/00
Abstract: 本发明提供了一种视频设备快速溯源的方法,该方法通过获取每个设备相机的一段视频,通过处理视频并且计算视频的相机指纹特征的方式计算出相机特征,建立数据库,每一部设备有自己独立的相机特征。同样方式计算待测视频的相机特征值,通过计算这个值与相机特征数据库中的特征值相关性来判断这个视频来自于哪部设备。本发明利用了相机指纹这种难以被修改和伪造的设备物理硬件特征在计算过程中以迭代处理,采用多种高效的识别方法实现设备高效溯源。
-
公开(公告)号:CN112508049A
公开(公告)日:2021-03-16
申请号:CN202011211533.6
申请日:2020-11-03
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06K9/62
Abstract: 本发明提供的一种基于组稀疏优化的类聚方法,首先是数据的处理,其目的在于获得数据集样本间的相似度矩阵目标矩阵、误差最小项和稀疏约束项;第二,构建基于组稀疏约束的优化模型,其目的在于利用更为强力的组稀疏约束来抑制噪声影响;之后,本发明提供一种基于交替方向乘子(Alternating Direction Method of Multipliers)的优化算法来快速求解所构建的优化模型;最后,本发明提供一种快速的优化聚类算法,其目的是合并冗余的聚类结果,进一步提升性能。本发明的方法约束每个样本只能由一个样本近似表示,从而可以有效的提升算法鲁棒性;另一方面,所得到的目标矩阵无需再进行谱聚类分析,从而达到端到端的聚类效果。
-
公开(公告)号:CN112508049B
公开(公告)日:2023-11-17
申请号:CN202011211533.6
申请日:2020-11-03
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06V10/762 , G06V10/40
Abstract: 本发明提供的一种基于组稀疏优化的类聚方法,首先是数据的处理,其目的在于获得数据集样本间的相似度矩阵目标矩阵、误差最小项和稀疏约束项;第二,构建基于组稀疏约束的优化模型,其目的在于利用更为强力的组稀疏约束来抑制噪声影响;之后,本发明提供一种基于交替方向乘子(Alternating Direction Method of Multipliers)的优化算法来快速求解所构建的优化模型;最后,本发明提供一种快速的优化聚类算法,其目的是合并冗余的聚类结果,进一步提升性能。本发明的方法约束每个样本只能由一个样本近似表示,从而可以有效的提升算法鲁棒性;另一方面,所得到的目标矩阵无需再进行谱聚类分析,从而达到端到端的聚类效果。
-
公开(公告)号:CN104978395B
公开(公告)日:2019-05-21
申请号:CN201510267106.2
申请日:2015-05-22
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
Abstract: 本发明实施例提供了一种视觉词典的构建及应用方法和装置。包括:确定训练图像数据集,提取所述训练图像数据集中全部训练图像的局部描述符,得到第一局部描述符集;根据设定的分解方式将所述第一局部描述符集分解成若干第一子局部描述符集;对每个所述第一子局部描述符集分别进行聚类,分别得到每个所述第一子局部描述符集对应的第一视觉子词集,由所有所述第一视觉子词集构成视觉词典。通过本发明实施例,在构建视觉词典的过程中,提高了为实现图像检索所需要的运算时间以及内存占用。
-
公开(公告)号:CN109543776A
公开(公告)日:2019-03-29
申请号:CN201811265669.8
申请日:2018-10-29
Applicant: 北京交通大学
CPC classification number: G06K9/64 , G06K9/6215 , G06K9/6249 , G06K9/6256
Abstract: 本发明设计了一种双盲环境下的图像相机源识别方法,属于图像信号处理、数字图像取证和机器学习技术领域。本发明首先训练了一种结合了度量损失和分类损失的深度卷积模型,并利用其提取图像的相机特征;之后利用词袋模型快速计算图像集的相似性矩阵;最后,设计了相应的优化方程,并利用ADMM框架进行求解,其结果能够预测大规模背景下相机源未知的图像集中相机源的数量和相机-图像对应关系。本发明的显著优势在于只用有限类别的训练数据来提取不限类别的图像相机源特征,并能快速的解决大规模背景下的双盲相机源检测问题。
-
公开(公告)号:CN109543776B
公开(公告)日:2021-01-22
申请号:CN201811265669.8
申请日:2018-10-29
Applicant: 北京交通大学
Abstract: 本发明设计了一种双盲环境下的图像相机源识别方法,属于图像信号处理、数字图像取证和机器学习技术领域。本发明首先训练了一种结合了度量损失和分类损失的深度卷积模型,并利用其提取图像的相机特征;之后利用词袋模型快速计算图像集的相似性矩阵;最后,设计了相应的优化方程,并利用ADMM框架进行求解,其结果能够预测大规模背景下相机源未知的图像集中相机源的数量和相机‑图像对应关系。本发明的显著优势在于只用有限类别的训练数据来提取不限类别的图像相机源特征,并能快速的解决大规模背景下的双盲相机源检测问题。
-
公开(公告)号:CN106815869B
公开(公告)日:2020-06-19
申请号:CN201611077901.6
申请日:2016-11-30
Applicant: 北京鑫洋泉电子科技有限公司 , 北京交通大学
IPC: G06T7/80
Abstract: 本发明涉及鱼眼相机的光心确定方法及装置。该方法包括:确定内部参数矩阵的水平轴的尺度因子和垂直轴的尺度因子;确定畸变图的特征点,并对特征点进行映射处理,得到特征点在校正图中对应的校正点;分别对校正图的各行各列的校正点进行拟合,得到校正图的各行各列对应的拟合直线;根据光心参考坐标确定多个候选光心坐标;对于每个候选光心坐标,分别计算校正图的各行各列的校正点到拟合直线的距离之和;将使距离之和最小的候选光心坐标确定为鱼眼相机的光心坐标。根据本发明的鱼眼相机的光心确定方法及装置能够减小内部参数矩阵中参数的误差,提高鱼眼相机的光心确定的精确度,从而能够提高鱼眼相机的标定精度,使校正后的图像更准确。
-
公开(公告)号:CN102750339B
公开(公告)日:2014-04-16
申请号:CN201210182770.3
申请日:2012-06-05
Applicant: 北京交通大学
IPC: G06F17/30 , H04N21/232
Abstract: 本发明公开了一种基于视频重构的重复片段定位方法,包括以下步骤:去除查询视频序列和引用视频序列中视频帧与视频帧之间存在的大量冗余,为时间临近、内容一致的小段视频抽取具有代表性的视频关键帧,实现数据的精简处理;利用伪文本文档来描述视频关键帧内容;将视频关键帧之间的视觉相似性计算转化为伪文本文档之间的相似性度量,对查询视频关键帧和引用视频关键帧之间的相似性进行度量,进而为每一幅查询关键帧返回一系列相似引用关键帧;综合利用重复视频片段的时间一致性约束及不重复片段之间的时间不连续性来重构引用视频片段、确定重复视频片段的边界信息。可用于数字媒体挖掘、版权保护。
-
-
-
-
-
-
-
-