-
公开(公告)号:CN108154080B
公开(公告)日:2020-09-01
申请号:CN201711205432.6
申请日:2017-11-27
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06K9/00
Abstract: 本发明提供了一种视频设备快速溯源的方法,该方法通过获取每个设备相机的一段视频,通过处理视频并且计算视频的相机指纹特征的方式计算出相机特征,建立数据库,每一部设备有自己独立的相机特征。同样方式计算待测视频的相机特征值,通过计算这个值与相机特征数据库中的特征值相关性来判断这个视频来自于哪部设备。本发明利用了相机指纹这种难以被修改和伪造的设备物理硬件特征在计算过程中以迭代处理,采用多种高效的识别方法实现设备高效溯源。
-
公开(公告)号:CN108154080A
公开(公告)日:2018-06-12
申请号:CN201711205432.6
申请日:2017-11-27
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06K9/00
Abstract: 本发明提供了一种视频设备快速溯源的方法,该方法通过获取每个设备相机的一段视频,通过处理视频并且计算视频的相机指纹特征的方式计算出相机特征,建立数据库,每一部设备有自己独立的相机特征。同样方式计算待测视频的相机特征值,通过计算这个值与相机特征数据库中的特征值相关性来判断这个视频来自于哪部设备。本发明利用了相机指纹这种难以被修改和伪造的设备物理硬件特征在计算过程中以迭代处理,采用多种高效的识别方法实现设备高效溯源。
-
公开(公告)号:CN105975478A
公开(公告)日:2016-09-28
申请号:CN201610218382.4
申请日:2016-04-09
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
Abstract: 本发明实施例提供了一种基于词向量分析的网络文章所属事件的检测方法和装置。该方法主要包括:建立典型训练集;对典型训练集中的每一条网络文章样本进行分词,去无用词预处理,得到规范化的网络文章样本文本;将每一条规范化的网络文章样本文本分别用word2vec算法和LDA算法提取特征,得到每一条网络文章样本文对应的多维词向量;将每一条网络文章样本文本对应的多维词向量和事件标签输入到随机森林算法,该随机森林算法输出事件的分类模型,利用所述事件的分类模型对待识别的网络文章文本进行识别,判断出所述待识别的网络文章文本所属的事件。本发明实施例充分利用了网络文本样本的信息,提高了网络文本样本所属事件分类的准确度。
-
公开(公告)号:CN112508049B
公开(公告)日:2023-11-17
申请号:CN202011211533.6
申请日:2020-11-03
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06V10/762 , G06V10/40
Abstract: 本发明提供的一种基于组稀疏优化的类聚方法,首先是数据的处理,其目的在于获得数据集样本间的相似度矩阵目标矩阵、误差最小项和稀疏约束项;第二,构建基于组稀疏约束的优化模型,其目的在于利用更为强力的组稀疏约束来抑制噪声影响;之后,本发明提供一种基于交替方向乘子(Alternating Direction Method of Multipliers)的优化算法来快速求解所构建的优化模型;最后,本发明提供一种快速的优化聚类算法,其目的是合并冗余的聚类结果,进一步提升性能。本发明的方法约束每个样本只能由一个样本近似表示,从而可以有效的提升算法鲁棒性;另一方面,所得到的目标矩阵无需再进行谱聚类分析,从而达到端到端的聚类效果。
-
公开(公告)号:CN104978395B
公开(公告)日:2019-05-21
申请号:CN201510267106.2
申请日:2015-05-22
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
Abstract: 本发明实施例提供了一种视觉词典的构建及应用方法和装置。包括:确定训练图像数据集,提取所述训练图像数据集中全部训练图像的局部描述符,得到第一局部描述符集;根据设定的分解方式将所述第一局部描述符集分解成若干第一子局部描述符集;对每个所述第一子局部描述符集分别进行聚类,分别得到每个所述第一子局部描述符集对应的第一视觉子词集,由所有所述第一视觉子词集构成视觉词典。通过本发明实施例,在构建视觉词典的过程中,提高了为实现图像检索所需要的运算时间以及内存占用。
-
公开(公告)号:CN112508049A
公开(公告)日:2021-03-16
申请号:CN202011211533.6
申请日:2020-11-03
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
IPC: G06K9/62
Abstract: 本发明提供的一种基于组稀疏优化的类聚方法,首先是数据的处理,其目的在于获得数据集样本间的相似度矩阵目标矩阵、误差最小项和稀疏约束项;第二,构建基于组稀疏约束的优化模型,其目的在于利用更为强力的组稀疏约束来抑制噪声影响;之后,本发明提供一种基于交替方向乘子(Alternating Direction Method of Multipliers)的优化算法来快速求解所构建的优化模型;最后,本发明提供一种快速的优化聚类算法,其目的是合并冗余的聚类结果,进一步提升性能。本发明的方法约束每个样本只能由一个样本近似表示,从而可以有效的提升算法鲁棒性;另一方面,所得到的目标矩阵无需再进行谱聚类分析,从而达到端到端的聚类效果。
-
公开(公告)号:CN106127197B
公开(公告)日:2020-07-07
申请号:CN201610219337.0
申请日:2016-04-09
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
Abstract: 本发明实施例提供了一种基于显著标签排序的图像显著性目标检测方法和装置。该方法主要包括:将图像样本集中的每幅图像使用SLIC分割方法划分成多个图像区域,对每个图像区域提取视觉特征和背景对比度特征;根据每个图像区域的视觉特征、背景对比度特征和显著值标签组成训练集与测试集,使用基于显著标签排序的算法学习出每幅图像中每个图像区域的显著值;利用低秩矩阵恢复理论恢复图像中每个区域的显著值,检测出图像中的显著目标。本发明的方法充分利用矩阵的核范数控制模型的复杂度,结合视觉特征相似性以及语义标签相似性,利用图拉普拉斯正则化约束之间的相关性,有效解决显著性标签空间较大但训练图像数量有限的问题。
-
公开(公告)号:CN106127197A
公开(公告)日:2016-11-16
申请号:CN201610219337.0
申请日:2016-04-09
Applicant: 北京交通大学 , 中国移动通信集团设计院有限公司
Abstract: 本发明实施例提供了一种基于显著标签排序的图像显著性目标检测方法。该方法主要包括:将图像样本集中的每幅图像使用SLIC分割方法划分成多个图像区域,对每个图像区域提取视觉特征和背景对比度特征;根据每个图像区域的视觉特征、背景对比度特征和显著值标签组成训练集与测试集,使用基于显著标签排序的算法学习出每幅图像中每个图像区域的显著值;利用低秩矩阵恢复理论利用每个图像区域的显著值对每幅图像进行显著图的恢复,检测出图像中的显著目标。本发明的方法充分利用矩阵的核范数控制模型的复杂度,结合视觉特征相似相以及语义标签相似性,利用图拉普拉斯正则化约束之间的相关性,有效解决显著性标签空间较大但训练图像数量有限的问题。
-
公开(公告)号:CN114255739B
公开(公告)日:2025-05-06
申请号:CN202010996191.7
申请日:2020-09-21
Applicant: 中国移动通信集团设计院有限公司 , 中国移动通信集团有限公司
Abstract: 本发明实施例提供一种识别语音中关键词的方法及装置,其中,该方法包括:将待识别语音输入至语音识别模型,输出待识别语音对应的模糊发音空间;根据模糊发音空间,对关键词集进行搜索,获取待识别语音对应的关键词的识别结果;其中,模糊发音空间,用于表示待识别语音对应的多种语音识别结果。本发明实施例提供的识别语音中关键词的方法及装置,通过语音识别模型对待识别语音进行识别,获取多种可能的语音识别结果,组成模糊发音空间,将模糊发音空间和预先建立的关键词集进行匹配搜索,输出匹配到的关键词,使用模糊发音空间搜索的方法,能够成功处理语音的相似表达、语音中的吞字现象和语音中的发音不准确现象,能提高语音匹配的查全率。
-
公开(公告)号:CN119721246A
公开(公告)日:2025-03-28
申请号:CN202411799401.8
申请日:2024-12-09
Applicant: 中国移动通信集团设计院有限公司 , 中国移动通信集团有限公司
Inventor: 高鹏 , 陈祖泉 , 侯晓琳 , 张晨 , 陈文驰 , 杜雪涛 , 杜刚 , 赵蓓 , 秦本源 , 孙婧婧 , 陈燕雷 , 李岩 , 雷涛 , 周顶 , 于少中 , 于雷 , 刘逸哲 , 刘胜兰 , 平亦安 , 陈凡
IPC: G06N5/04 , G06N5/02 , G06F16/3329 , G06F40/30 , G06F40/194
Abstract: 本发明公开了一种大语言模型测评方法、装置、设备、存储介质和程序产品,针对大语言模型在主观问答方面的测评,使用可自动计算出的定量评价指标的测评方式,以及在进行能力测试时,可以实现模型问题和模型回答的一致性测评以及模型回答和参考答案的一致性测评中的至少一种,针对模型回答和模型问题、模型回答和参考答案之间的相似度实现模型的针对性自动测评,减少人工工作量以及人工主观测评带来的误差干扰,提高了测评效率和准确率。
-
-
-
-
-
-
-
-
-