一种基于词向量分析的网络文章所属事件的检测方法和装置

    公开(公告)号:CN105975478A

    公开(公告)日:2016-09-28

    申请号:CN201610218382.4

    申请日:2016-04-09

    Abstract: 本发明实施例提供了一种基于词向量分析的网络文章所属事件的检测方法和装置。该方法主要包括:建立典型训练集;对典型训练集中的每一条网络文章样本进行分词,去无用词预处理,得到规范化的网络文章样本文本;将每一条规范化的网络文章样本文本分别用word2vec算法和LDA算法提取特征,得到每一条网络文章样本文对应的多维词向量;将每一条网络文章样本文本对应的多维词向量和事件标签输入到随机森林算法,该随机森林算法输出事件的分类模型,利用所述事件的分类模型对待识别的网络文章文本进行识别,判断出所述待识别的网络文章文本所属的事件。本发明实施例充分利用了网络文本样本的信息,提高了网络文本样本所属事件分类的准确度。

    基于低秩矩阵分解的文章话题关键词提取方法和装置

    公开(公告)号:CN105912524A

    公开(公告)日:2016-08-31

    申请号:CN201610218407.0

    申请日:2016-04-09

    Abstract: 本发明实施例提供了一种基于低秩矩阵分解的文章话题关键词提取方法和装置。该方法主要包括:使用将词表征为实数值向量的工具训练数据预处理后的文章文本,得到词向量化文件,使用基于文本图模型的关键词抽取算法抽取数据预处理后的文章文本中的特定话题下每个事件的关键词,根据抽取的关键词查询词向量化文件,建立特定话题下的关键词矩阵;采用增广拉格朗日乘子算法求解关键词矩阵的低秩分解问题,得到关键词低秩矩阵,最终生成所述数据预处理后的文章文本中所述特定话题下的关键词。本发明采用低秩矩阵分解的方法生成微博等文章话题的关键词,有效的解决了微博等文章话题关键词的稀疏性问题,大大降低了非关键词数据噪声的干扰。

    基于显著标签排序的图像显著性目标检测方法和装置

    公开(公告)号:CN106127197B

    公开(公告)日:2020-07-07

    申请号:CN201610219337.0

    申请日:2016-04-09

    Abstract: 本发明实施例提供了一种基于显著标签排序的图像显著性目标检测方法和装置。该方法主要包括:将图像样本集中的每幅图像使用SLIC分割方法划分成多个图像区域,对每个图像区域提取视觉特征和背景对比度特征;根据每个图像区域的视觉特征、背景对比度特征和显著值标签组成训练集与测试集,使用基于显著标签排序的算法学习出每幅图像中每个图像区域的显著值;利用低秩矩阵恢复理论恢复图像中每个区域的显著值,检测出图像中的显著目标。本发明的方法充分利用矩阵的核范数控制模型的复杂度,结合视觉特征相似性以及语义标签相似性,利用图拉普拉斯正则化约束之间的相关性,有效解决显著性标签空间较大但训练图像数量有限的问题。

    基于低秩矩阵分解的文章话题关键词提取方法和装置

    公开(公告)号:CN105912524B

    公开(公告)日:2019-08-20

    申请号:CN201610218407.0

    申请日:2016-04-09

    Abstract: 本发明实施例提供了一种基于低秩矩阵分解的文章话题关键词提取方法和装置。该方法主要包括:使用将词表征为实数值向量的工具训练数据预处理后的文章文本,得到词向量化文件,使用基于文本图模型的关键词抽取算法抽取数据预处理后的文章文本中的特定话题下每个事件的关键词,根据抽取的关键词查询词向量化文件,建立特定话题下的关键词矩阵;采用增广拉格朗日乘子算法求解关键词矩阵的低秩分解问题,得到关键词低秩矩阵,最终生成所述数据预处理后的文章文本中所述特定话题下的关键词。本发明采用低秩矩阵分解的方法生成微博等文章话题的关键词,有效的解决了微博等文章话题关键词的稀疏性问题,大大降低了非关键词数据噪声的干扰。

    一种基于显著标签排序的图像显著性目标检测方法

    公开(公告)号:CN106127197A

    公开(公告)日:2016-11-16

    申请号:CN201610219337.0

    申请日:2016-04-09

    Abstract: 本发明实施例提供了一种基于显著标签排序的图像显著性目标检测方法。该方法主要包括:将图像样本集中的每幅图像使用SLIC分割方法划分成多个图像区域,对每个图像区域提取视觉特征和背景对比度特征;根据每个图像区域的视觉特征、背景对比度特征和显著值标签组成训练集与测试集,使用基于显著标签排序的算法学习出每幅图像中每个图像区域的显著值;利用低秩矩阵恢复理论利用每个图像区域的显著值对每幅图像进行显著图的恢复,检测出图像中的显著目标。本发明的方法充分利用矩阵的核范数控制模型的复杂度,结合视觉特征相似相以及语义标签相似性,利用图拉普拉斯正则化约束之间的相关性,有效解决显著性标签空间较大但训练图像数量有限的问题。

    高速铁路列车自主协同运行控制方法及系统

    公开(公告)号:CN118732499A

    公开(公告)日:2024-10-01

    申请号:CN202410715378.3

    申请日:2024-06-04

    Abstract: 本发明提供高速铁路列车自主协同运行控制方法及系统,属于高速铁路列车运行控制技术领域,构建复杂运行环境下高速铁路自主感知理论模块;从自主感知理论模块提取数据,构建协同条件下高速列车运行控制模型,得到面向状态驱动的高速列车智能自主控制模块,构建动力学列车模型,输出协同条件下多车追踪优化方法,得到基于车车通信的多车追踪间隔优化控制模块;得到多层域列车群博弈模型,获取基于群体智能的列车群分布式协同控制模块,实现列车群分布式协同运行控制。本发明生成基于全局信息的控制调度多尺度推荐策略和面向状态驱动的运行时主动防护曲线,实现了基于群体智能的分布式控制,有效提升行车安全性和运行效率,最大化提升旅客运输能力。

    一种基于少学习参数神经网络的物联网设备数据服务方法

    公开(公告)号:CN117896413A

    公开(公告)日:2024-04-16

    申请号:CN202410202022.X

    申请日:2024-02-23

    Abstract: 本发明提供了一种基于少学习参数神经网络的物联网设备数据服务方法。该方法包括:使用不学习模块替换深度神经网络模型中的可学习卷积层,得到少学习参数神经网络模型;云服务器中将训练好的少学习参数神经网络模型中的不学习参数去除,得到只包含可学习参数的手术模型,将随机种子和手术模型通过网络传输给物联网设备;物联网设备通过随机种子动态生成不学习参数,根据不学习参数与包含无梯度的推理时参数得到完整的神经网络模型,以提供数据服务。本发明方法中的物联网设备只需存储云服务器传输的可学习参数与随机种子,就可以在物联网设备上部署完整的神经网络,减少了云服务器传输至物联网设备的模型参数数量与物联网设备的存储资源开销。

    基于多子空间表示的偏多标记学习方法

    公开(公告)号:CN111581469B

    公开(公告)日:2024-03-01

    申请号:CN202010412162.1

    申请日:2020-05-15

    Abstract: 本发明提供了一种基于多子空间表示的偏多标记学习方法。该方法包括利用真实标记矩阵构建标记子空间,利用特征映射矩阵构建特征子空间,通过标记子空间和特征子空间学习得到基于多子空间表示的偏多标记学习模型;对基于多子空间表示的偏多标记学习模型进行交替优化训练学习,求解基于多子空间表示的偏多标记学习模型,得到最优的预测模型;将未知样本输入到最优的预测模型,最优的预测模型输出未知样本的标记信息。本发明解决了特征存在噪声和冗余标记的问题,使用映射矩阵将特征空间映射到子空间,减少特征噪声对预测模型的影响;使用矩阵分解技术将标记空间降维到标记子空间,使用图拉普拉斯约束标记子空间,消除冗余标记噪声对预测模型的影响。

    基于局部上下文的跨模态图文检索方法及系统

    公开(公告)号:CN116775927A

    公开(公告)日:2023-09-19

    申请号:CN202310585136.2

    申请日:2023-05-23

    Abstract: 本发明提供一种基于局部上下文的跨模态图文检索方法及系统,属于计算机视觉、模式识别及人工智能技术领域,获取数据并预处理后,使用自底向上的注意力机制提取图像中的显著区域;使用序列模型获得文本特征;对图像的区域特征和文本的单词特征分别建立图结构,并使用图卷积神经网络进行模态内关联性挖掘;模型加入了区域上下文学习模块,从方向和距离的角度学习图像区域的上下文信息,获得了图像中不同区域之间的空间关系和潜在语义关系。引入交叉注意力机制进行模态间交互探索模态间细粒度对应关系,将增强后的局部特征与通过自注意力得到的全局特征拼接,使用多层注意力公式对其进行相似度推理,获得最终的相似度分数,提高了图文检索的精度。

    任务自适应的小样本行为识别方法及系统

    公开(公告)号:CN115240106B

    公开(公告)日:2023-06-20

    申请号:CN202210815080.0

    申请日:2022-07-12

    Abstract: 本发明提供一种任务自适应的小样本行为识别方法及系统,属于计算机视觉技术领域,获取待识别的视频数据;利用预先训练好的识别模型,对获取的所述待识别的视频数据进行处理,得到动作类别结果加入注意力层,提取行为主体在图片帧中的位置信息以及图像内容信息,通过注意力机制对提取的特征特征进行调制,获取同一类动作的类内特征共性以及不同类动作的类间的差异性。本发明提取特征时加入注意力层,产生更具分辨性的特征表示;对同类行为中不同样本进行随机多模态融合,扩充了支持集数据,使得模型对行为主体所在环境的变换鲁棒性更强;通过task级的特征调制,使特征更符合当前任务的需求并聚焦于行为主体,有助于提高分类准确率。

Patent Agency Ranking