一种基于反向注意力网络的单目标跟踪方法

    公开(公告)号:CN117853531A

    公开(公告)日:2024-04-09

    申请号:CN202410036684.4

    申请日:2024-01-10

    Abstract: 本发明提供了一种基于反向注意力网络的单目标跟踪方法。该方法包括:标记视频数据第一帧中的包含跟踪目标位置的边界框,将边界框图像区域作为模板图像,根据模板图像获取下一帧中的搜索域图像;将模板图像和搜索域图像输入到特征提取网络,特征提取网络将模板图像和搜索域图像从三通道彩色图像转化为多通道特征,输出模板特征和搜索域特征;将模板特征和搜索域特征输入堆叠的反向注意力模型,反向注意力模型输出优化后的模板特征和搜索域特征,预测分支根据优化后的模板特征和搜索域特征输出当前帧中的目标位置。本发明方法能够实现抑制模板和搜索域中非目标特征的目标,从而提高模型对目标特征的感知精度以及目标跟踪算法的准确度。

    一种基于数据增强的小样本学习方法

    公开(公告)号:CN117853867A

    公开(公告)日:2024-04-09

    申请号:CN202410022359.2

    申请日:2024-01-05

    Abstract: 本发明提供了一种基于数据增强的小样本学习方法。该方法包括:通过RotMix模块和RotCom模块对源数据进行数据增强处理,将增强后的数据传输给MixNet模型;MixNet模型通过特征提取模块、类别多样性编码模块对增强后的数据集进行特征提取与编码,得到特征表示;MixNet模型通过对比学习模块对所述特征表示进行对比学习,得到优化后的特征表示,通过比较不同样本对的特征表示,优化MixNet模型的区分能力;将优化后的特征表示转换为源数据的分类结果,并进行展示。本发明方法从数据增强开始,通过RotMix和RotCom引入多样性和复杂性,再经由MixNet模型进行深度特征提取和类别多样性编码。对比学习模块进一步优化了模型的区分能力。最终将处理结果以用户友好的方式呈现。

Patent Agency Ranking