一种基于多任务级联深度学习的轨道交通客流预测方法

    公开(公告)号:CN118536640A

    公开(公告)日:2024-08-23

    申请号:CN202410434364.4

    申请日:2024-04-11

    Abstract: 本发明提供了一种基于多任务级联深度学习的轨道交通客流预测方法。该方法包括:多任务级联深度学习客流预测模型构建轨道交通网络的长期拓扑邻接图与长期地理邻接图,并输入到构建的自适应供需共享嵌入网络中,多任务级联深度学习客流预测模型自适应供需共享嵌入网络多任务级联深度学习客流预测模型输出起点站点的供给特征和终点站点的需求特征;将起点站点的供给特征输入到进站客流预测器,得到预测的进站客流;将终点站点的需求特征输入到出站客流预测器,得到预测的出站客流;对预测得到的进站客流、出站客流以及OD对间的线级阻抗指标,按照自适应供需共享嵌入网络学习到的起终站点供需特征的维度进行密集嵌入,并按照OD对的起终点进行连接,得到OD对的属性特征,根据所述OD对的属性特征通过多头自注意力网络捕捉不同特征间的高阶交互关系,得到预测的OD客流。本发明方法可以提供更准确、泛化能力更强的端到端的客流预测。

    一种基于多任务级联深度学习的轨道交通客流预测方法

    公开(公告)号:CN118536640B

    公开(公告)日:2024-11-19

    申请号:CN202410434364.4

    申请日:2024-04-11

    Abstract: 本发明提供了一种基于多任务级联深度学习的轨道交通客流预测方法。该方法包括:多任务级联深度学习客流预测模型构建轨道交通网络的长期拓扑邻接图与长期地理邻接图,并输入到构建的自适应供需共享嵌入网络中,多任务级联深度学习客流预测模型自适应供需共享嵌入网络多任务级联深度学习客流预测模型输出起点站点的供给特征和终点站点的需求特征;将起点站点的供给特征输入到进站客流预测器,得到预测的进站客流;将终点站点的需求特征输入到出站客流预测器,得到预测的出站客流;对预测得到的进站客流、出站客流以及OD对间的线级阻抗指标,按照自适应供需共享嵌入网络学习到的起终站点供需特征的维度进行密集嵌入,并按照OD对的起终点进行连接,得到OD对的属性特征,根据所述OD对的属性特征通过多头自注意力网络捕捉不同特征间的高阶交互关系,得到预测的OD客流。本发明方法可以提供更准确、泛化能力更强的端到端的客流预测。

    一种基于城市轨道交通网络服务韧性测度方法及应用

    公开(公告)号:CN114493201A

    公开(公告)日:2022-05-13

    申请号:CN202210031246.X

    申请日:2022-01-12

    Abstract: 本发明公开了一种基于城市轨道交通网络服务韧性测度方法以及具体的应用,本发明提出了两个计算基本量,分别是面向供给侧的车公里数和面向需求侧的人公里数。并基于这两个基本量分别提出对应的城市轨道交通网络韧性测度指标。计算原理简易、过程方便、结果有效。本发明提出的测度方法对城市轨道交通运营管理部门进行全网韧性水平评估具有重要的借鉴意义,构建的“运营事故识别‑恢复曲线聚类‑事故恢复预测”的应急处理框架,对轨道交通运营管理部门提前部署事故应急处置措施有很好的指导意义,共同保障了突发事故下城市轨道交通系统的正常运营,提前做好预防,降低网络服务损失。

Patent Agency Ranking