一种校准加速器束流偏移的强化学习方法

    公开(公告)号:CN110278651B

    公开(公告)日:2020-10-16

    申请号:CN201810206762.5

    申请日:2018-03-14

    Applicant: 兰州大学

    Abstract: 本发明公开一种校准加速器束流偏移的强化学习方法。在加速器的中能束流传输段中,束流受设备安装精度和周围复杂环境的影响而发生位置偏移,其严重影响了束流所能够达到的能量级别。传统方法是通过复杂的物理计算得到校准电压值,并使用脚本程序自动输入进行不断尝试,其过程复杂繁琐。本文通过对中能束流传输段中的三组水平和竖直方向的四极磁铁内部集成的校准线圈分析,依靠强化学习利用环境和智能体之间交互学习的特性对加速器环境进行建模,是一种使用确定性策略探索连续的大状态空间和动作空间,并利用神经网络逼近最优校准电压值的束流偏移校准方法。

    一种校准加速器束流偏移的强化学习方法

    公开(公告)号:CN110278651A

    公开(公告)日:2019-09-24

    申请号:CN201810206762.5

    申请日:2018-03-14

    Applicant: 兰州大学

    Abstract: 本发明公开一种校准加速器束流偏移的强化学习方法。在加速器的中能束流传输段中,束流受设备安装精度和周围复杂环境的影响而发生位置偏移,其严重影响了束流所能够达到的能量级别。传统方法是通过复杂的物理计算得到校准电压值,并使用脚本程序自动输入进行不断尝试,其过程复杂繁琐。本文通过对中能束流传输段中的三组水平和竖直方向的四极磁铁内部集成的校准线圈分析,依靠强化学习利用环境和智能体之间交互学习的特性对加速器环境进行建模,是一种使用确定性策略探索连续的大状态空间和动作空间,并利用神经网络逼近最优校准电压值的束流偏移校准方法。

Patent Agency Ranking