一种多模态网络互联融合的胸部影像诊断报告自动生成方法

    公开(公告)号:CN116779091B

    公开(公告)日:2024-02-27

    申请号:CN202310710730.X

    申请日:2023-06-15

    Abstract: 本发明提供了一种多模态网络互联融合的胸部影像诊断报告自动生成方法,涉及医疗信息领域。本发明提出了一种基于残差网络(Resnet)、注意力机制(Transformer)模块的网络、跨模态强化记忆网络(DCTMN)的多模态网络互联融合医学报告自动生成方法,关照和融通上述两个发力点,促进跨模态(医学影像和对应报告文本)信息的交互与匹配,自动生成图像与文本信息有效融合的医学影像诊断报告。(56)对比文件柯艺雅 等.基于深度学习的多模态骨癌影像分类诊断系统研究《.信息与电脑(理论版)》.2021,第33卷(第06期),136-138.郭淑涛.一种基于深度学习的中文图像描述模型《.天津理工大学学报》.2020,(第03期),30-35.Ketki Gupte 等.Multimodal ProductMatching and Category Mapping: Text+Imagebased Deep Neural Network《.2021 IEEEInternational Conference on Big Data (BigData)》.2022,4500-4505.

    基于MSPCNN的胆囊结石超声图像全自动分割方法

    公开(公告)号:CN109685814A

    公开(公告)日:2019-04-26

    申请号:CN201910001478.9

    申请日:2019-01-02

    Abstract: 本发明公开了一种基于MSPCNN的胆囊结石超声图像全自动分割方法,包括:采用MSPCNN算法对超声图像进行分割,得到胆囊粗分割二值图像;采用形态学算法对所述胆囊粗分割二值图像进行分割,得到胆囊精确分割二值图像和结石精确分割二值图像;采用局部加权线性回归算法分别对所述胆囊精确分割二值图像和结石精确分割二值图像进行后处理,使胆囊结石边缘轮廓平滑,最终得到胆囊区域分割结果和结石区域分割结果。实现降低计算复杂度、减少分割步骤、提高图像分割速度与精度的优点。

    基于MSPCNN的胆囊结石超声图像全自动分割方法

    公开(公告)号:CN109685814B

    公开(公告)日:2020-10-23

    申请号:CN201910001478.9

    申请日:2019-01-02

    Abstract: 本发明公开了一种基于MSPCNN的胆囊结石超声图像全自动分割方法,包括:采用MSPCNN算法对超声图像进行分割,得到胆囊粗分割二值图像;采用形态学算法对所述胆囊粗分割二值图像进行分割,得到胆囊精确分割二值图像和结石精确分割二值图像;采用局部加权线性回归算法分别对所述胆囊精确分割二值图像和结石精确分割二值图像进行后处理,使胆囊结石边缘轮廓平滑,最终得到胆囊区域分割结果和结石区域分割结果。实现降低计算复杂度、减少分割步骤、提高图像分割速度与精度的优点。

Patent Agency Ranking