-
公开(公告)号:CN114004865A
公开(公告)日:2022-02-01
申请号:CN202111314111.6
申请日:2021-11-08
申请人: 兰州交通大学
摘要: 本发明公开了一种结合DSST尺度估计的孪生网络增强现实目标跟踪注册方法,将DSST滤波器引入到孪生网络跟踪过程中,用HOG特征弥补孪生网络中深度特征,抑制向相似目标产生漂移;转移到DSST中的候选目标由SiamFC筛选更加准确,缓解了DSST的边界效应;目标位置和尺度传递回SiamFC网络后,采用线性插值更新相关滤波系数进行目标重定位,得到较为精准的待注册目标区域;对待注册目标特征通过ORB算法进行检测匹配,通过汉明距离进行匹配后对误匹配对采用RANSAC进行剔除,并根据匹配相邻帧间特征关系求得注册矩阵,并与OpenGL生成的立方体虚拟模型渲染后完成虚拟信息的注册,确保实时性的同时提高了传统的增强现实跟踪注册算法结果的准确率、鲁棒性和稳健性。