-
公开(公告)号:CN113256629B
公开(公告)日:2022-06-24
申请号:CN202110759301.2
申请日:2021-07-05
Abstract: 本发明公开了一种图像标定错误检测方法及装置,方法包括:建立图像数据集,利用所述图像数据集对无监督异常检测神经网络进行训练,将训练过程中将产生的隐层特征进行重构,得到隐层特征重构层;将所述隐层特征重构层嵌入所述无监督异常检测神经网络,然后对待检测图像数据进行异常检测,根据异常得分函数,判别待检测图像数据是否标定错误;装置包括:依次连接的基干网络模块、隐层特征重构模块和异常得分模块;本发明能够扩大正常样本与异常样本之间的异常得分差距,提高异常检测性能。
-
公开(公告)号:CN113256629A
公开(公告)日:2021-08-13
申请号:CN202110759301.2
申请日:2021-07-05
Abstract: 本发明公开了一种图像标定错误检测方法及装置,方法包括:建立图像数据集,利用所述图像数据集对无监督异常检测神经网络进行训练,将训练过程中将产生的隐层特征进行重构,得到隐层特征重构层;将所述隐层特征重构层嵌入所述无监督异常检测神经网络,然后对待检测图像数据进行异常检测,根据异常得分函数,判别待检测图像数据是否标定错误;装置包括:依次连接的基干网络模块、隐层特征重构模块和异常得分模块;本发明能够扩大正常样本与异常样本之间的异常得分差距,提高异常检测性能。
-
公开(公告)号:CN111126386B
公开(公告)日:2023-06-30
申请号:CN201911321106.0
申请日:2019-12-20
Applicant: 复旦大学
IPC: G06V20/62 , G06V30/19 , G06V10/82 , G06N3/0442 , G06N3/0455 , G06N3/0464 , G06N3/094 , G06N3/096
Abstract: 本发明属于人工智能技术领域,具体为一种基于属于机器视觉场景文本识别任务上的领域适应方法。本发明方法包括:构建CNN‑LSTM网络、注意力网络;将两者组合成场景文本识别网络;将自源域与目标域的场景图像输入场景文本识别网络,由CNN‑LSTM从输入的场景图像中提取图像特征,由注意力网络对图像特征进行再编码,提取出每一个字符的对应特征,实现将图像中的文本信息切分成字符级别信息;最后运用基于对抗学习的迁移学习技术,构建域分类网络,与场景文本识别网络共同构成对抗生成网络,最终使模型能够有效适应目标域。本发明充分利用少量目标域标定样本,解决了在实际场景文本识别任务中经常出现的样本稀缺问题,提高识别效果。
-
公开(公告)号:CN111126386A
公开(公告)日:2020-05-08
申请号:CN201911321106.0
申请日:2019-12-20
Applicant: 复旦大学
Abstract: 本发明属于人工智能技术领域,具体为一种基于属于机器视觉场景文本识别任务上的领域适应方法。本发明方法包括:构建CNN-LSTM网络、注意力网络;将两者组合成场景文本识别网络;将自源域与目标域的场景图像输入场景文本识别网络,由CNN-LSTM从输入的场景图像中提取图像特征,由注意力网络对图像特征进行再编码,提取出每一个字符的对应特征,实现将图像中的文本信息切分成字符级别信息;最后运用基于对抗学习的迁移学习技术,构建域分类网络,与场景文本识别网络共同构成对抗生成网络,最终使模型能够有效适应目标域。本发明充分利用少量目标域标定样本,解决了在实际场景文本识别任务中经常出现的样本稀缺问题,提高识别效果。
-
-
-