-
公开(公告)号:CN116453003B
公开(公告)日:2023-09-01
申请号:CN202310701408.0
申请日:2023-06-14
IPC: G06V20/17 , G06V20/10 , G06V10/82 , G06V10/22 , G06V10/26 , G06V10/28 , G06V10/56 , G06N3/0464 , G06N3/08 , G06Q50/02
Abstract: 本发明一种基于无人机监测智能识别水稻生长势的方法,包括:获取水稻小区图像,对图像进行标注,建立深度卷积神经网络检测模型,使用标注的水稻小区图像对模型进行优化训练,将待检测的水稻小区图像输入训练好的模型中,检测每张图像中水稻小区目标框的位置;选取每张水稻小区图像中最大面积的目标框,对目标框中的水稻小区图像进行预处理;计算预处理后的水稻小区图像的植被覆盖率,按照植被覆盖率高低判定水稻小区生长势的级别。本发明还提供了一种基于无人机监测智能识别水稻生长势的系统。本发明方法简单,在水稻生长势的识别方面精度高,速度快,成本低,能够广泛应用于农业的自动化、智能化生产管理中。
-
公开(公告)号:CN117174161A
公开(公告)日:2023-12-05
申请号:CN202311078766.7
申请日:2023-08-25
Abstract: 本发明公开了一种基于频域变换增强的表型预测方法,包括:获取不同作物植株的基因数据和表型数据并对其进行预处理;对预处理后的基因数据进行数值映射;对数值映射后的基因序列进行离散傅里叶变换,判断每个窗口是否为蛋白质编码区,并根据判断结果对蛋白质编码区进行特征增强;将特征增强后的基因序列进行处理,采用低频特征、高频去噪后的特征、小波逆变换后的低频特征以及作为标签的预处理后的表型数据对三流网络进行优化训练;将待检测基因序列的特征输入到训练好的三流网络中,输出表型预测结果。本发明还公开了一种基于频域变换增强的表型预测装置。本发明利用基因编码区的先验提高表型预测效果,实现时频上的基因到表型的非线性关系。
-
公开(公告)号:CN116597245A
公开(公告)日:2023-08-15
申请号:CN202310401225.7
申请日:2023-04-13
IPC: G06V10/774 , G06V10/82 , G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种图像识别模型训练方法与系统、图像处理方法与系统,在预训练第一神经网络模型基础上,通过训练图像样本在第一神经网络模型和第二神经网络模型中间层的第一中间层特征表达与第二中间层特征进行通道匹配,并基于匹配通道之间的知识蒸馏得到第一损失函数,同时还结合基于预测类别标签信息和软标签构建的第二损失函数以及基于预测类别标签信息和真实标签构建的第三损失函数对第二神经网络模型进行联合训练,这样可以实现两模型通道之间的自动匹配,增强第二神经网络模型获取的知识表达的判别性,进而提升图像识别精度。基于该图像识别模型进行的图像识别也大大提升了图像识别准确性。
-
公开(公告)号:CN116704384A
公开(公告)日:2023-09-05
申请号:CN202310702822.3
申请日:2023-06-14
IPC: G06V20/17 , G06V20/10 , G06V20/70 , G06V10/774 , G06V10/82 , G06V10/764 , G06V10/26 , G06N3/0464
Abstract: 本发明公开了一种基于无人机监测智能识别水稻抽穗期的方法,该方法包括:获取水稻小区图像;对图像进行标注,将标注的图像输入到训练好的深度卷积神经网络检测模型中,检测每张图像中的水稻小区目标框的位置,选取图像中最大面积的目标框,裁剪出框中的水稻小区图像;对深度卷积神经网络检测模型检测效果不满足要求的图像进行人工手动标注,按标注区域对图像进行裁剪;将裁剪后的图像输入到一个基于深度卷积神经网络的二分类器中,输出水稻小区是否为抽穗期的预测结果。本发明还公开了一种基于无人机监测智能识别水稻抽穗期的装置。本发明实现方法简单,可移植性强,能够实现对田间种植的各品种水稻抽穗期的精准识别。
-
公开(公告)号:CN116453003A
公开(公告)日:2023-07-18
申请号:CN202310701408.0
申请日:2023-06-14
IPC: G06V20/17 , G06V20/10 , G06V10/82 , G06V10/22 , G06V10/26 , G06V10/28 , G06V10/56 , G06N3/0464 , G06N3/08 , G06Q50/02
Abstract: 本发明一种基于无人机监测智能识别水稻生长势的方法,包括:获取水稻小区图像,对图像进行标注,建立深度卷积神经网络检测模型,使用标注的水稻小区图像对模型进行优化训练,将待检测的水稻小区图像输入训练好的模型中,检测每张图像中水稻小区目标框的位置;选取每张水稻小区图像中最大面积的目标框,对目标框中的水稻小区图像进行预处理;计算预处理后的水稻小区图像的植被覆盖率,按照植被覆盖率高低判定水稻小区生长势的级别。本发明还提供了一种基于无人机监测智能识别水稻生长势的系统。本发明方法简单,在水稻生长势的识别方面精度高,速度快,成本低,能够广泛应用于农业的自动化、智能化生产管理中。
-
公开(公告)号:CN117851883B
公开(公告)日:2024-08-30
申请号:CN202410006211.X
申请日:2024-01-03
Applicant: 之江实验室
IPC: G06F18/241 , G06F18/213 , G06F18/25 , G06F18/27 , G06V10/764 , G06V10/82 , G06N3/0455
Abstract: 本发明公开了一种基于跨模态大语言模型的场景文本检测与识别方法,该方法包括:获取多组具有真值标注的图像‑文本数据集;利用图像编码器对数据集中的图像进行特征提取与学习,得到图像模态的特征嵌入;将图像模态特征嵌入与对应真值标注的文本特征嵌入融合构造为图像及自然语言的多模态特征序列;将融合后的多模态特征序列输入大语言模型当中进行跨模态编解码,再进行自回归机制下的网络微调;将文本图像输入上述训练好的图像编码器与大语言模型当中,通过线性分类与类目查表的方式将网络输出翻译为当前图片当中所包含的文本目标的内容及位置,从而完成文本检测与识别任务。本发明实现方法简便,灵活鲁棒,适用范围广。
-
公开(公告)号:CN118378592B
公开(公告)日:2024-08-16
申请号:CN202410803845.8
申请日:2024-06-20
Applicant: 之江实验室
IPC: G06F40/117 , G06N5/04 , G06F40/151
Abstract: 本说明书公开了一种基于公式学习的大模型微调方法、装置及存储介质,获取包含公式的原始文本中的公式和公式的候选变量。针对每个公式,根据该公式的上下文内容,确定目标文本并确定目标文本中的候选变量,在该公式中确定与候选变量一致的匹配变量,根据包含候选变量的语句确定解释文本。将目标文本的解释文本和匹配变量屏蔽,得到任务文本,根据公式和解释文本确定任务文本的标注。将任务文本和任务提示输入大模型得到预测文本,根据预测文本与标注的差异微调大模型。通过屏蔽目标文本的解释文本和匹配变量,对大模型进行微调,使大模型学习到公式中的变量与其解释之间的对应关系,从而在问答任务中提高大模型对涉及公式计算问题的回答准确率。
-
公开(公告)号:CN118279610A
公开(公告)日:2024-07-02
申请号:CN202410704308.8
申请日:2024-06-03
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 本发明公开了一种基于图像表型匹配的大豆表型识别方法、电子设备、介质,包括:获取待识别的大豆图片;将其输入至预先训练好的图像编码器中提取得到图像特征,将图像特征输入至预先训练好的表型解码器中得到大豆图片获得表型结果;其中,图像编码器以及表型解码器的训练过程包括:获取大豆成熟期图像并对其设置表型标签和数组标签;将大豆成熟期图像及其对应的表型标签分别输入至图像编码器、表型编码器,从而训练图像编码器、表型编码器;固定表型编码器的网络权重;将表型标签输入至表型编码器提取得到表型特征,将表型特征输入至表型解码器提取得到表型结果识别特征,基于表型结果识别特征与数组标签间的差值从而反向传播优化表型解码器。
-
公开(公告)号:CN116721412B
公开(公告)日:2024-05-03
申请号:CN202310406872.7
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/68 , G06V10/82 , G06V10/774 , G06V10/776 , G06V10/40 , G06N3/0464 , G06N3/09
Abstract: 一种自下而上的基于结构性先验的豆荚关键点检测方法,自定义不同类型豆荚中豆粒的关键点含义,构建了包含主干网络、豆粒位置置信度热力图子网络、部位亲和域子网络、结构先验子网络四部分的自下而上的豆粒关键点检测网络,可实现先利用位置置信度检测得到所有的豆粒位置,然后结合部位亲和域积分计算,利用匈牙利算法得到豆粒之间的最优匹配连接关系,从而提取到豆荚的数量和豆荚的类型。特别的,在训练阶段通过添加结构先验子网络,提升模型的准确率。还包括一种自下而上的基于结构性先验的豆荚关键点检测系统。本发明从豆荚形态上确定豆荚类型,可快速同时检测多个豆荚,并定位得到豆荚中每个豆粒的位置。
-
公开(公告)号:CN117079060B
公开(公告)日:2024-03-12
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
-
-
-
-
-
-
-
-