一种基于频域变换增强的表型预测方法和装置

    公开(公告)号:CN117174161A

    公开(公告)日:2023-12-05

    申请号:CN202311078766.7

    申请日:2023-08-25

    Abstract: 本发明公开了一种基于频域变换增强的表型预测方法,包括:获取不同作物植株的基因数据和表型数据并对其进行预处理;对预处理后的基因数据进行数值映射;对数值映射后的基因序列进行离散傅里叶变换,判断每个窗口是否为蛋白质编码区,并根据判断结果对蛋白质编码区进行特征增强;将特征增强后的基因序列进行处理,采用低频特征、高频去噪后的特征、小波逆变换后的低频特征以及作为标签的预处理后的表型数据对三流网络进行优化训练;将待检测基因序列的特征输入到训练好的三流网络中,输出表型预测结果。本发明还公开了一种基于频域变换增强的表型预测装置。本发明利用基因编码区的先验提高表型预测效果,实现时频上的基因到表型的非线性关系。

    一种基于跨模态大语言模型的场景文本检测与识别方法

    公开(公告)号:CN117851883B

    公开(公告)日:2024-08-30

    申请号:CN202410006211.X

    申请日:2024-01-03

    Abstract: 本发明公开了一种基于跨模态大语言模型的场景文本检测与识别方法,该方法包括:获取多组具有真值标注的图像‑文本数据集;利用图像编码器对数据集中的图像进行特征提取与学习,得到图像模态的特征嵌入;将图像模态特征嵌入与对应真值标注的文本特征嵌入融合构造为图像及自然语言的多模态特征序列;将融合后的多模态特征序列输入大语言模型当中进行跨模态编解码,再进行自回归机制下的网络微调;将文本图像输入上述训练好的图像编码器与大语言模型当中,通过线性分类与类目查表的方式将网络输出翻译为当前图片当中所包含的文本目标的内容及位置,从而完成文本检测与识别任务。本发明实现方法简便,灵活鲁棒,适用范围广。

    一种基于公式学习的大模型微调方法、装置及存储介质

    公开(公告)号:CN118378592B

    公开(公告)日:2024-08-16

    申请号:CN202410803845.8

    申请日:2024-06-20

    Abstract: 本说明书公开了一种基于公式学习的大模型微调方法、装置及存储介质,获取包含公式的原始文本中的公式和公式的候选变量。针对每个公式,根据该公式的上下文内容,确定目标文本并确定目标文本中的候选变量,在该公式中确定与候选变量一致的匹配变量,根据包含候选变量的语句确定解释文本。将目标文本的解释文本和匹配变量屏蔽,得到任务文本,根据公式和解释文本确定任务文本的标注。将任务文本和任务提示输入大模型得到预测文本,根据预测文本与标注的差异微调大模型。通过屏蔽目标文本的解释文本和匹配变量,对大模型进行微调,使大模型学习到公式中的变量与其解释之间的对应关系,从而在问答任务中提高大模型对涉及公式计算问题的回答准确率。

    基于图像表型匹配的大豆表型识别方法、电子设备、介质

    公开(公告)号:CN118279610A

    公开(公告)日:2024-07-02

    申请号:CN202410704308.8

    申请日:2024-06-03

    Abstract: 本发明公开了一种基于图像表型匹配的大豆表型识别方法、电子设备、介质,包括:获取待识别的大豆图片;将其输入至预先训练好的图像编码器中提取得到图像特征,将图像特征输入至预先训练好的表型解码器中得到大豆图片获得表型结果;其中,图像编码器以及表型解码器的训练过程包括:获取大豆成熟期图像并对其设置表型标签和数组标签;将大豆成熟期图像及其对应的表型标签分别输入至图像编码器、表型编码器,从而训练图像编码器、表型编码器;固定表型编码器的网络权重;将表型标签输入至表型编码器提取得到表型特征,将表型特征输入至表型解码器提取得到表型结果识别特征,基于表型结果识别特征与数组标签间的差值从而反向传播优化表型解码器。

Patent Agency Ranking