-
公开(公告)号:CN117370536B
公开(公告)日:2024-03-12
申请号:CN202311673949.3
申请日:2023-12-07
Applicant: 之江实验室
IPC: G06F16/332 , G06F16/33 , G06N3/0464 , G06N3/08
Abstract: 本说明书公开了一种任务执行方法、装置、存储介质及电子设备。可以将用户输入的指定文本输入到预先训练的语言模型中,以通过语言模型确定指定文本对应的文本特征表示,并可以确定每个候选问题文本特征表示与文本特征表示之间的相关度,以根据相关度,从各候选问题文本特征表示中确定出与文本特征表示相匹配的候选问题文本特征表示,作为目标问题文本特征表示,并根据目标问题文本特征表示与所述文本特征表示之间的相关度是否低于预设的相关度阈值,确定是否向用户请求补充文本信息,以及是否将预先确定的目标问题文本特征表示对应的回复文本,作为指定文本对应的目标回复文本回复给用户。
-
公开(公告)号:CN116757216B
公开(公告)日:2023-11-07
申请号:CN202311024641.6
申请日:2023-08-15
Applicant: 之江实验室
IPC: G06F40/295 , G06F16/35
Abstract: 本申请涉及一种基于聚类描述的小样本实体识别方法、装置和计算机设备,通过获取待识别文本数据;将所述待识别文本数据输入实体边界定位模型,得到所述待识别文本数据中所有实体的实体边界;将所述待识别文本数据以及所述实体边界输入实体聚类模型,得到多个类别的实体;基于多个类别的所述实体,确定每个类别的类别标识以及对应实体。上述基于聚类描述的小样本实体识别方法,基于实体边界定位模型和实体聚类模型,能够精准识别实体边界,并对实体进行精准分类,明显提高了实体识别和分类效率,并且由于人工介入的减少,也会一定程度提高实体标记的准确性。
-
公开(公告)号:CN116628198A
公开(公告)日:2023-08-22
申请号:CN202310515566.7
申请日:2023-05-08
Applicant: 之江实验室
IPC: G06F16/35 , G06F40/169 , G06F40/186
Abstract: 本说明书公开了一种文本生成模型的训练方法、装置、介质及电子设备,包括:先将从通用文本数据集中确定出的原始文本输入预先训练的类型识别模型,确定原始文本的模板标注。再根据模板标注,确定模板标注对应的目标模板。然后,根据原始文本、模板标注以及目标模板,生成训练文本生成模型的训练样本,将输入部分输入待训练的文本生成模型,得到输出文本,以样本标注与输出文本之间的差异最小为训练目标,对待训练的文本生成模型进行训练,增加了训练文本生成模型的训练样本,使得可以在训练样本较少的情况下,训练文本生成模型,使得文本生成模型训练效果好,提高文本生成模型的输出文本的准确性。
-
公开(公告)号:CN116579308A
公开(公告)日:2023-08-11
申请号:CN202310819781.6
申请日:2023-07-06
Applicant: 之江实验室
IPC: G06F40/166 , G06F40/14 , G06F40/109 , G06F40/258 , G06F40/237 , G06F40/284 , G06F40/216
Abstract: 本发明公开了一种演示文稿生成方法及装置,该方法包括:获取生成演示文稿的主题,基于预先构建并训练完成的文本生成模块,得到演示文稿的二级标题和每个二级标题下的文字内容;将所述演示文稿的主题、二级标题和每个二级标题下的文字内容结构化得到若干部分,将每个部分作为一页演示文稿,对除了首页和目录页以外的其他页进行关键词提取;基于提取出的关键词,通过文本生成图像模块生成各页演示文稿对应的配图图像;把划分后的文字内容和对应页的配图图像进行自动排版,得到完整的演示文稿。
-
公开(公告)号:CN115774736A
公开(公告)日:2023-03-10
申请号:CN202310095934.7
申请日:2023-02-10
Applicant: 之江实验室
IPC: G06F16/2455 , G06F16/245 , G06F16/2453 , G06F16/22 , G06F16/901 , G06F16/903 , G06F9/50
Abstract: 本发明公开了一种数据延迟发送的NUMA架构时变图处理方法与装置,首选基于基线快照建立初始的时变图数据表示;根据更新快照以更新时变图数据表示,并构建快照并集;基于快照并集,在NUMA节点内部进行迭代计算,更新并累积顶点数据;将累积的顶点数据传播到其他NUMA节点以更新其他顶点数据;循环上述步骤,直至每个NUMA节点内没有可计算的活动顶点,对每个NUMA节点输出的结果进行聚合,完成NUMA架构时变图的处理。本发明关注了服务器的NUMA结构特征,实现了数据的合理分配以及数据包的灵活传输,降低了NUMA节点间的通信频率,提高计算资源的利用率,使时变图的计算效率得到显著提高。
-
公开(公告)号:CN116992875A
公开(公告)日:2023-11-03
申请号:CN202311263225.1
申请日:2023-09-27
Applicant: 之江实验室
IPC: G06F40/289 , G06F40/30 , G06N20/00
Abstract: 本申请涉及一种文本生成方法、装置、计算机设备和存储介质。所述方法包括:基于关键词数据集训练初始文本生成模型,所述关键词数据集包括参考关键词以及参考文本,将所述参考关键词输入所述初始文本生成模型,得到初始模型生成文本,将所述初始模型生成文本以及初始拼接文本作为关键词中文对比数据集,基于所述关键词中文对比数据集和标准中文对比数据集训练文本生成奖励模型,基于所述初始文本生成模型和文本生成奖励模型确定目标文本生成模型,将候选关键词输入所述目标文本生成模型,得到目标生成文本。不仅保证了关键词一定出现在生成文本中,还提高了生成文本的语义准确性。
-
公开(公告)号:CN116991986A
公开(公告)日:2023-11-03
申请号:CN202311269260.4
申请日:2023-09-28
Applicant: 之江实验室
IPC: G06F16/33 , G06F16/35 , G06F18/214 , G06F18/23213
Abstract: 本申请涉及一种语言模型轻量化方法、装置、计算机设备和存储介质。所述方法包括:对初始语言模型的注意力层的可学习参数进行聚类,得到可学习参数的分区;对各个分区进行组合,得到初始语言模型的所有裁剪方式;基于初始语言模型的注意力层的各个功能在各个裁剪方式下的波动率,得到各个功能的对应分区;剔除或量化与待处理的任务所对应的功能相关性低的可学习参数,得到待训练的语言模型的可学习参数;基于待训练的语言模型的可学习参数,利用梯度下降法对可学习参数进行训练,直到收敛,得到完备的轻量化语言模型。采用本方法能够解决了现有的语言模型无法利用较少的计算资源来实现高精度的任务处理的问题。
-
公开(公告)号:CN114758035B
公开(公告)日:2022-09-27
申请号:CN202210661703.3
申请日:2022-06-13
Applicant: 之江实验室
Abstract: 本发明公开了一种针对未配对数据集的图像生成方法及装置,该方法包括:对第一模型和第二模型进行改进,其中所述第二模型包括第一子模型和第二子模型;将两组内部具有相同数据分布的未配对数据集作为改进后的第一模型的输入,训练改进后的第一模型,并通过改进后的第一模型训练完成后输出的两组配对数据集分别训练改进后的第一子模型和第二子模型;获取未配对数据集;将所述未配对数据集输入训练后的第一模型后,得到所述第一模型生成的第一生成数据集和第二生成数据集;将所述第一生成数据集和第二生成数据集分别输入训练后的第一子模型和第二子模型,并将所述第一子模型和第二子模型生成的第三生成数据集和第四生成数据集作为最终生成结果。
-
公开(公告)号:CN117370536A
公开(公告)日:2024-01-09
申请号:CN202311673949.3
申请日:2023-12-07
Applicant: 之江实验室
IPC: G06F16/332 , G06F16/33 , G06N3/0464 , G06N3/08
Abstract: 本说明书公开了一种任务执行方法、装置、存储介质及电子设备。可以将用户输入的指定文本输入到预先训练的语言模型中,以通过语言模型确定指定文本对应的文本特征表示,并可以确定每个候选问题文本特征表示与文本特征表示之间的相关度,以根据相关度,从各候选问题文本特征表示中确定出与文本特征表示相匹配的候选问题文本特征表示,作为目标问题文本特征表示,并根据目标问题文本特征表示与所述文本特征表示之间的相关度是否低于预设的相关度阈值,确定是否向用户请求补充文本信息,以及是否将预先确定的目标问题文本特征表示对应的回复文本,作为指定文本对应的目标回复文本回复给用户。
-
公开(公告)号:CN116579308B
公开(公告)日:2023-10-10
申请号:CN202310819781.6
申请日:2023-07-06
Applicant: 之江实验室
IPC: G06F40/166 , G06F40/14 , G06F40/109 , G06F40/258 , G06F40/237 , G06F40/284 , G06F40/216
Abstract: 本发明公开了一种演示文稿生成方法及装置,该方法包括:获取生成演示文稿的主题,基于预先构建并训练完成的文本生成模块,得到演示文稿的二级标题和每个二级标题下的文字内容;将所述演示文稿的主题、二级标题和每个二级标题下的文字内容结构化得到若干部分,将每个部分作为一页演示文稿,对除了首页和目录页以外的其他页进行关键词提取;基于提取出的关键词,通过文本生成图像模块生成各页演示文稿对应的配图图像;把划分后的文字内容和对应页的配图图像进行自动排版,得到完整的演示文稿。
-
-
-
-
-
-
-
-
-