-
公开(公告)号:CN117079060B
公开(公告)日:2024-03-12
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
公开(公告)号:CN114972976B
公开(公告)日:2022-12-20
申请号:CN202210902801.1
申请日:2022-07-29
Applicant: 之江实验室
Abstract: 本发明公开了基于频域自注意力机制的夜间目标检测、训练方法及装置,采用具有夜间图像检测标签的开源数据集训练检测网络,首先将输入图像进行预处理,使其从RGB转化为YUV通道,分别将三个通道的图像划分成多个区块;对于三个通道的各个区块,分别进行DCT离散余弦变换;将各个区块中属于同一频域的信息依据其原本的空间关系存入同一通道中,生成数个代表不同频域的通道;将所有频域通道输入自注意力网络模块,该模块通过计算各通道之间的可缩放点积自注意力,输出每个通道动态加权后的数值,再将其分别输入相同的多层感知器MLP;将输出结果输入检测网络中,最终获得图像的检测结果。
-
公开(公告)号:CN114067294A
公开(公告)日:2022-02-18
申请号:CN202210052681.0
申请日:2022-01-18
Applicant: 之江实验室
IPC: G06V20/58 , G06V20/62 , G06V10/40 , G06V10/74 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于文本特征融合的细粒度车辆识别系统及方法,系统包括:特征提取模块、分类层、文本表示网络、相似度计算模块、融合标签计算模块、散度损失计算模块;方法包括:步骤S1,构建细粒度车辆图像分类数据集;步骤S2,将训练图像进行特征提取;步骤S3,对图像特征向量进行分类;步骤S4,将数据集各子类标签输入预先训练好的文本表示网络;步骤S5,通过图像特征向量与图像标签的词向量;将得到的强化标签分布与原标签向量进行加权融合;步骤S6,将预测标签分布与加权融合的标签分布的相似度作为损失,指导整个系统的训练;步骤S7,推理阶段,将待测图像进行特征提取与分类层,根据预测的标签分布确定图像类别。
-
公开(公告)号:CN119785161A
公开(公告)日:2025-04-08
申请号:CN202510274959.2
申请日:2025-03-10
Applicant: 之江实验室
Abstract: 本说明书公开了一种遥感影像融合方法、装置、存储介质及电子设备。在采用本说明书提供的遥感影像融合方法实现卫星采集的多光谱影像与全色影像之间的融合时,可首先对多光谱影像和全色影像进行分块处理,得到多光谱影像子图与全色影像子图;随后对描述相同区域的多光谱影像子图和全色影像子图进行融合,得到融合影像子图;最终合并各融合影像子图得到目标融合影像。采用本方法可使遥感影像融合的全过程在星载计算机上实现,充分利用星载计算机的空闲算力的同时,大幅减少了星地见传输时需要传输的数据量,有效提高了遥感影像融合的效果和效率,减少了传输成本,且保证了目标融合影像的数据时效性。
-
公开(公告)号:CN118466864B
公开(公告)日:2024-09-24
申请号:CN202410937905.5
申请日:2024-07-12
Applicant: 之江实验室
IPC: G06F3/06
Abstract: 在本说明书提供一种卫星数据存储方法、装置、介质及设备中,首先确定待存储数据的数据大小,其次根据处理器的读取线程数量,分割待存储数据,得到各第一子数据,并确定各第一子数据与各读取线程的对应关系,通过所述各第一子数据对应的读取线程,将各第一子数据写入处理器缓存,最后响应于缓存中任一完整写入的第一子数据,根据处理器的写入线程数量,分割完整写入的第一子数据,得到各第二子数据,确定各第二子数据与各写入线程的对应关系,并据此对应关系,将各第二子数据写入存储器,通过对待存储数据的多次分割,避免了卫星在存储待存储数据时,出现因处理器内存大小不足导致的读写错误,降低了对处理器缓存的要求。
-
公开(公告)号:CN117593652B
公开(公告)日:2024-05-14
申请号:CN202410075345.7
申请日:2024-01-18
Applicant: 之江实验室
IPC: G06V20/10 , G06V10/26 , G06V10/82 , G06V10/774 , G06N3/0464
Abstract: 本发明公开了一种智能识别大豆叶片叶形的方法和系统,方法包括以下步骤:构建包含完整大豆叶片图像的训练集对基于深度卷积神经网络的大豆叶片检测分割模型进行训练,将待检测的大豆叶片图像输入训练好的大豆叶片检测分割模型并输出每张图像中分割出的大豆叶片图像;基于分割出的大豆叶片图像,采用最小外接矩形法计算叶长和叶宽,进而计算得到大豆叶片长宽比;将分割出的大豆叶片图像切分为若干区域,基于大豆叶片长宽比及各区域的叶片像素量判定大豆叶片叶形。本发明能够实现对大豆叶片叶形的自动高效识别,识别精度和速度高,适用于智能识别大豆品种等实战部署场景。
-
公开(公告)号:CN114202794B
公开(公告)日:2022-11-25
申请号:CN202210147360.9
申请日:2022-02-17
Applicant: 之江实验室
Abstract: 本发明涉及人工智能算法技术领域,具体涉及一种基于人脸ppg信号的疲劳检测方法和装置,该方法包括以下步骤:步骤一,通过摄像头采集包含人脸的视频帧,进行人脸提取;步骤二,使用关键点检测方法,提取人脸关键点,进行头部运动检测;步骤三,对提取人脸进行预处理,通过疲劳分类模型并结合检测到的头部运动信息,得到疲劳检测结果。本发明针对于人脸的生理信号变化,采用深度学习训练的方式,增加疲劳检测与人脸生理信号变化的相关性,从而提高基于人脸的疲劳检测精度。
-
公开(公告)号:CN118569207B
公开(公告)日:2024-11-08
申请号:CN202411017441.2
申请日:2024-07-29
Applicant: 之江实验室
IPC: G06F40/126 , G06N3/0455
Abstract: 一种基于预生成token的星载大模型投机解码方法和装置,其方法包含:步骤1)离线预生成所有token的下一个token,得到预生成token字典对;步骤2)推理时,通过步骤1)猜测之后的token序列,并使用文本生成模型进行验证猜测到的序列,在模型在线推理生成token的时候,依据token字典对进行token查询,猜测生成之后的token,在线验证token预生成模块猜测得到的token正确性,当验证成功之后,即接受猜测的token,从而实现大模型token解码的加速生成。本发明在线推理时进行token查询猜测,并进行验证,提高大模型每一次推理时得到的正确token数量,从而加快token的生成速度。
-
公开(公告)号:CN118569207A
公开(公告)日:2024-08-30
申请号:CN202411017441.2
申请日:2024-07-29
Applicant: 之江实验室
IPC: G06F40/126 , G06N3/0455
Abstract: 一种基于预生成token的星载大模型投机解码方法和装置,其方法包含:步骤1)离线预生成所有token的下一个token,得到预生成token字典对;步骤2)推理时,通过步骤1)猜测之后的token序列,并使用文本生成模型进行验证猜测到的序列,在模型在线推理生成token的时候,依据token字典对进行token查询,猜测生成之后的token,在线验证token预生成模块猜测得到的token正确性,当验证成功之后,即接受猜测的token,从而实现大模型token解码的加速生成。本发明在线推理时进行token查询猜测,并进行验证,提高大模型每一次推理时得到的正确token数量,从而加快token的生成速度。
-
公开(公告)号:CN114067294B
公开(公告)日:2022-05-13
申请号:CN202210052681.0
申请日:2022-01-18
Applicant: 之江实验室
IPC: G06V20/58 , G06V20/62 , G06V10/40 , G06V10/74 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于文本特征融合的细粒度车辆识别系统及方法,系统包括:特征提取模块、分类层、文本表示网络、相似度计算模块、融合标签计算模块、散度损失计算模块;方法包括:步骤S1,构建细粒度车辆图像分类数据集;步骤S2,将训练图像进行特征提取;步骤S3,对图像特征向量进行分类;步骤S4,将数据集各子类标签输入预先训练好的文本表示网络;步骤S5,通过图像特征向量与图像标签的词向量;将得到的强化标签分布与原标签向量进行加权融合;步骤S6,将预测标签分布与加权融合的标签分布的相似度作为损失,指导整个系统的训练;步骤S7,推理阶段,将待测图像进行特征提取与分类层,根据预测的标签分布确定图像类别。
-
-
-
-
-
-
-
-
-