对话系统中口语理解的跨语言迁移方法

    公开(公告)号:CN109213851A

    公开(公告)日:2019-01-15

    申请号:CN201810724523.9

    申请日:2018-07-04

    Abstract: 本发明涉及语言处理领域,并提出了一种对话系统中口语理解的跨语言迁移方法,旨在解决在对话系统中口语理解的跨语言迁移中,因语义标签难以迁移和语言文化差异造成迁移结果质量不佳的技术问题。为此目的,本发明中的口语的跨语言迁移方法包括:获取待迁移的有标注口语理解数据;利用预先构建的口语理解迁移模型对所述带类别标记的待迁移数据进行迁移,得到带类别标记的第一迁移结果;对第一迁移结果进行文化迁移,得到目标语言的口语理解数据。基于上述步骤,本发明可以快速、准确的对口语理解数据进行跨语言迁移,改善了因为双语带类别标记数据不足而导致的有监督训练方法效果不佳的问题,降低了在模型训练中的数据收集和标注成本。

    对话系统中口语理解的跨语言迁移方法

    公开(公告)号:CN109213851B

    公开(公告)日:2021-05-25

    申请号:CN201810724523.9

    申请日:2018-07-04

    Abstract: 本发明涉及语言处理领域,并提出了一种对话系统中口语理解的跨语言迁移方法,旨在解决在对话系统中口语理解的跨语言迁移中,因语义标签难以迁移和语言文化差异造成迁移结果质量不佳的技术问题。为此目的,本发明中的口语的跨语言迁移方法包括:获取待迁移的有标注口语理解数据;利用预先构建的口语理解迁移模型对所述带类别标记的待迁移数据进行迁移,得到带类别标记的第一迁移结果;对第一迁移结果进行文化迁移,得到目标语言的口语理解数据。基于上述步骤,本发明可以快速、准确的对口语理解数据进行跨语言迁移,改善了因为双语带类别标记数据不足而导致的有监督训练方法效果不佳的问题,降低了在模型训练中的数据收集和标注成本。

    人机混合的应答方法、系统、装置

    公开(公告)号:CN109783704A

    公开(公告)日:2019-05-21

    申请号:CN201910005704.0

    申请日:2019-01-03

    Abstract: 本发明属于人机对话技术领域,具体涉及一种人机混合的应答方法、系统、装置,旨在为了解决现有人机应答方法无法实现在线学习的问题。本发明方法包括:对当前对话上下文Ct进行编码,得到第一表征向量E(Ct);基于对话任务下的候选回复语句,并进行编码后得到第二表征向量 基于第一表征向量E(Ct)、第二表征向量通过不确定性估计方法获取候选回复语句能够正确回复用户提问的置信度,置信度大于设定阈值则选择置信度对应的候选回复语句进行应答输出,否则获取通过人机交互设备录入的回复语句或选定的候选回复语句进行应答输出,并基于应答输出后得到的全部对话语句进行上述步骤中的参数优化。本发明保证了输出的应答语句具有足够的置信度,实现了对话模型的在线学习更新。

    融合规则信息的可控制性对话管理扩展方法

    公开(公告)号:CN108268616A

    公开(公告)日:2018-07-10

    申请号:CN201810009140.3

    申请日:2018-01-04

    Abstract: 本发明属于人机对话技术领域,具体涉及一种融合规则信息的可控制性对话管理扩展方法,旨在解决数据驱动的对话系统通过重新构建交互环境的方式进行扩展时成本高、效率低下的问题,本方法包括:S1,基于交互数据,确定需要扩充的新用户意图,并对原语言理解模块进行扩展;S2,基于新用户意图,构建该新用户意图对应的新对话规则;S3,基于交互数据、原对话管理模块的对话策略、新对话规则,构建新对话管理模块映射空间所需满足的约束;S4,基于S3中得到的新对话管理模块映射空间所需满足的约束,对原对话管理模块进行扩展,生成新对话管理模块。本发明可以对数据驱动的对话系统根据用户反馈进行快速扩展、高效迭代。

    人机混合的应答方法、系统、装置

    公开(公告)号:CN109783704B

    公开(公告)日:2021-02-02

    申请号:CN201910005704.0

    申请日:2019-01-03

    Abstract: 本发明属于人机对话技术领域,具体涉及一种人机混合的应答方法、系统、装置,旨在为了解决现有人机应答方法无法实现在线学习的问题。本发明方法包括:对当前对话上下文Ct进行编码,得到第一表征向量E(Ct);基于对话任务下的候选回复语句,并进行编码后得到第二表征向量基于第一表征向量E(Ct)、第二表征向量通过不确定性估计方法获取候选回复语句能够正确回复用户提问的置信度,置信度大于设定阈值则选择置信度对应的候选回复语句进行应答输出,否则获取通过人机交互设备录入的回复语句或选定的候选回复语句进行应答输出,并基于应答输出后得到的全部对话语句进行上述步骤中的参数优化。本发明保证了输出的应答语句具有足够的置信度,实现了对话模型的在线学习更新。

    融合规则信息的可控制性对话管理扩展方法

    公开(公告)号:CN108268616B

    公开(公告)日:2020-09-01

    申请号:CN201810009140.3

    申请日:2018-01-04

    Abstract: 本发明属于人机对话技术领域,具体涉及一种融合规则信息的可控制性对话管理扩展方法,旨在解决数据驱动的对话系统通过重新构建交互环境的方式进行扩展时成本高、效率低下的问题,本方法包括:S1,基于交互数据,确定需要扩充的新用户意图,并对原语言理解模块进行扩展;S2,基于新用户意图,构建该新用户意图对应的新对话规则;S3,基于交互数据、原对话管理模块的对话策略、新对话规则,构建新对话管理模块映射空间所需满足的约束;S4,基于S3中得到的新对话管理模块映射空间所需满足的约束,对原对话管理模块进行扩展,生成新对话管理模块。本发明可以对数据驱动的对话系统根据用户反馈进行快速扩展、高效迭代。

    神经语义编解码分析方法及系统

    公开(公告)号:CN112232084B

    公开(公告)日:2024-11-12

    申请号:CN202011102971.9

    申请日:2020-10-15

    Abstract: 本发明涉及一种神经语义编解码分析方法及系统,所述神经语义编解码分析方法包括:训练回归模型拟合脑神经激活水平与文本刺激的向量表示之间的映射关系,建立文本表示模型;通过探针任务量化解析文本表示模型描述各类语言特征的能力,得到探针任务表现;根据探针任务表现,通过消融任务以调整文本表示模型;在调整后的文本表示模型生成的句子向量的基础上来执行分析任务。本发明通过训练回归模型拟合脑神经激活水平与文本刺激的向量表示之间的映射关系,建立文本表示模型,通过探针任务量化解析文本表示模型描述各类语言特征的能力;进一步通过消融任务确认文本表示模型的鲁棒性,并以此调整文本表示模型,从而可提高在执行分析任务时的准确率。

    多模态机器翻译方法、装置、电子设备和存储介质

    公开(公告)号:CN112800785A

    公开(公告)日:2021-05-14

    申请号:CN202110392717.5

    申请日:2021-04-13

    Abstract: 本发明提供一种多模态机器翻译方法、装置、电子设备和存储介质,所述方法包括:确定待翻译的源语言文本;将源语言文本输入至翻译模型中,得到翻译模型输出的目标语言文本;翻译模型是基于样本源语言文本和样本目标语言文本,以及与样本源语言文本匹配的样本图像,联合重建模型训练得到的;翻译模型与重建模型共用特征编码层,模型训练过程中特征编码层用于编码第一序列和第二序列,翻译模型基于第一序列的编码进行翻译,重建模型基于第二序列的编码进行重建,第一序列基于样本源语言文本确定,第二序列基于样本源语言文本中的各实体在样本图像中的区域图像和样本源语言文本的非实体确定,提高了质量提升的可解释性并且降低了翻译的复杂度。

    神经网络机器翻译方法、模型及模型形成方法

    公开(公告)号:CN111401081A

    公开(公告)日:2020-07-10

    申请号:CN201811534845.3

    申请日:2018-12-14

    Abstract: 本发明涉及神经网络机器翻译方法、模型及模型形成方法。形成神经网络机器翻译模型的方法包括:形成编码器,其包括第一多头注意力模型;形成解码器,其包括第二多头注意力模型和未来信息模型,未来信息模型表示当前预测单词和已经生成单词的第一注意力隐层表示和当前预测单词和未来可能的单词的第二注意力隐层表示的融合;通过编码器和解码器形成第一机器翻译模型;以及对第一机器翻译模型进行对源语言序列从左至右和从右至左的解码训练,以形成神经网络机器翻译模型,其中,第一多头注意力模型和未来信息模型为第二多头注意力模型提供输入。本发明解决了在机器翻译的过程中,在预测当前单词时,未来信息不能被充分利用的问题。

    基于深层神经网络翻译模型的解码方法

    公开(公告)号:CN108647214B

    公开(公告)日:2020-06-30

    申请号:CN201810270468.0

    申请日:2018-03-29

    Abstract: 本发明涉及语言处理领域,提出了一种基于深层神经网络翻译模型的解码方法,旨在解决机器翻译模型中模型训练复杂度高、训练难度大解码速度慢等问题。该方法的具体实施方式包括:对待翻译语句进行分词处理,得到源语言词汇;步骤2,使用自动对齐工具对预设的翻译模型词汇表中的语料进行词对齐,得到与所述源语言词汇对齐的目标语言单词;步骤3,基于步骤2所得到的目标语言单词,确定出所述待翻译语句的目标端动态词汇表,根据预先构建的翻译模型,使用柱搜索方法解码出的语句作为所述翻译模型的输出;其中,所述翻译模型为基于门限残差机制和平行注意力机制的深层神经网络。本发明提升了模型翻译质量,提高了模型解码速度。

Patent Agency Ranking