对文本中的事件论元进行抽取的方法和电子设备

    公开(公告)号:CN114297394B

    公开(公告)日:2022-07-01

    申请号:CN202210238820.9

    申请日:2022-03-11

    Abstract: 本公开涉及一种对文本中的事件论元进行抽取的方法和电子设备,该方法包括:对待处理文本中包含的事件类型进行检测,得到目标事件类型;根据该目标事件类型及对应的目标论元角色的先验关联信息,构造得到论元抽取问题;将待处理文本和论元抽取问题进行拼接,得到目标文本;将该目标文本的表示向量输入至机器阅读理解模型中,该模型包括两层依序设置的分类器,第一层分类器同步对该目标文本是否存在答案、对答案的开始位置和结束位置进行识别预测,得到携带有答案指示标签的位置预测结果;第二层分类器对开始位置和结束位置进行配对组合后的预测实体是否为事件论元进行预测,得到答案预测结果;根据该答案预测结果和对应的标签,输出事件论元。

    面向中文短文本的实体识别与实体链接方法

    公开(公告)号:CN113377930B

    公开(公告)日:2021-11-30

    申请号:CN202110931275.7

    申请日:2021-08-13

    Abstract: 本发明提供面向中文短文本的实体识别与实体链接方法,包括:使用知识库中的实体名称与实体别名信息去构建实体名称词典并识别出实体;将实体的描述文本输入到预训练语言模型中,得到实体的名称嵌入表示;将所述识别出的实体在原始短文本中的位置特征、原始短文本和所述实体的名称嵌入表示同时输入到融合知识库实体名嵌入的短文本实体识别模型中,得到当前实体是否为正确实体的概率;再与传统的实体识别模型融合,得到最终实体识别结果;利用给定的知识库构建实体指称项词典,并通过实体识别结果确定每一个待消歧实体的候选实体集合;将原始短文本和待消歧实体的描述文本连在一起,输入实体链接模型,得到正确的链接实体。

    基于预训练模型的交叉聚焦损失的溯因推理方法

    公开(公告)号:CN113283605A

    公开(公告)日:2021-08-20

    申请号:CN202110841128.0

    申请日:2021-07-26

    Abstract: 本发明提供基于预训练模型的交叉聚焦损失的溯因推理方法,包括:将观测对O1和O2与所有假设的结合,得到输入序列;将输入序列中的单一输入变量输入预训练模型,得到对应句子级别的特征矩阵,然后对特征矩阵的单词维度求和,得到特征向量;遍历输入序列中所有单一输入变量,得到特征向量序列;将特征向量序列输入双向长短期记忆网络,获取到分布式特征表示,再利用全连接层进行映射求和得到每个输入的分数;将输入序列中N个标签为真的值分别与所有标签为假的值组成N组,并进行组内softmax,得到交叉预测值;引入聚类因子和引入权重因子,改进FocalLoss,得到训练损失函数;优化所述训练损失函数,得到最优的溯因推理模型。

    对文本中的事件论元进行抽取的方法和电子设备

    公开(公告)号:CN114297394A

    公开(公告)日:2022-04-08

    申请号:CN202210238820.9

    申请日:2022-03-11

    Abstract: 本公开涉及一种对文本中的事件论元进行抽取的方法和电子设备,该方法包括:对待处理文本中包含的事件类型进行检测,得到目标事件类型;根据该目标事件类型及对应的目标论元角色的先验关联信息,构造得到论元抽取问题;将待处理文本和论元抽取问题进行拼接,得到目标文本;将该目标文本的表示向量输入至机器阅读理解模型中,该模型包括两层依序设置的分类器,第一层分类器同步对该目标文本是否存在答案、对答案的开始位置和结束位置进行识别预测,得到携带有答案指示标签的位置预测结果;第二层分类器对开始位置和结束位置进行配对组合后的预测实体是否为事件论元进行预测,得到答案预测结果;根据该答案预测结果和对应的标签,输出事件论元。

    面向中文短文本的实体识别与实体链接方法

    公开(公告)号:CN113377930A

    公开(公告)日:2021-09-10

    申请号:CN202110931275.7

    申请日:2021-08-13

    Abstract: 本发明提供面向中文短文本的实体识别与实体链接方法,包括:使用知识库中的实体名称与实体别名信息去构建实体名称词典并识别出实体;将实体的描述文本输入到预训练语言模型中,得到实体的名称嵌入表示;将所述识别出的实体在原始短文本中的位置特征、原始短文本和所述实体的名称嵌入表示同时输入到融合知识库实体名嵌入的短文本实体识别模型中,得到当前实体是否为正确实体的概率;再与传统的实体识别模型融合,得到最终实体识别结果;利用给定的知识库构建实体指称项词典,并通过实体识别结果确定每一个待消歧实体的候选实体集合;将原始短文本和待消歧实体的描述文本连在一起,输入实体链接模型,得到正确的链接实体。

    四元组门图神经网络事件预测方法、装置、设备及介质

    公开(公告)号:CN112633483A

    公开(公告)日:2021-04-09

    申请号:CN202110026128.5

    申请日:2021-01-08

    Abstract: 本申请实施例涉及一种四元组门图神经网络事件预测方法、装置、设备及介质,旨在提高传统事件预测精度。所述方法包括:将多个初始背景事件与多个待选事件构成事理图谱;将事理图谱中的所有事件的向量以四元组的形式进行表示,得到初始背景事件向量与初始待选事件向量;使用四元组门图神经网络对事理图谱进行图网络计算,得到多个新的背景事件向量与多个新的待选事件向量;利用注意力神经网络对事件的向量进行计算,得到背景事件的整体向量;将整体向量与每个新的待选事件向量进行打分,将得分最高的一个待选事件向量对应的待选事件作为预测结果。

    基于知识图谱子图检索的智能问答系统

    公开(公告)号:CN113297369B

    公开(公告)日:2022-04-01

    申请号:CN202110846067.7

    申请日:2021-07-26

    Abstract: 本发明提供基于知识图谱子图检索的智能问答系统,包括:所述问句处理模块识别用户输入问句中的实体,根据所述实体构建输入问句的句法依存树,得到实体之间的关系谓词;利用知识图谱嵌入得到知识图谱中三元组的低维稠密向量表示;将得到的用户输入问句中的实体映射到知识图谱中,得到每个实体在知识图谱中对应的候选实体列表,选择起点实体,引入关系谓词,在知识图谱中检索与之相匹配的知识图谱子图,再引入实体和关系谓词继续检索,迭代至全部的实体和关系谓词都引入完毕,输出检索到的知识图谱子图;再利用知识图谱子图过滤将检索得到的知识图谱子图进行剪枝;最后,输出相应结果。

Patent Agency Ranking