-
公开(公告)号:CN105260398A
公开(公告)日:2016-01-20
申请号:CN201510592018.X
申请日:2015-09-17
Applicant: 中国科学院自动化研究所
CPC classification number: G06F17/30781 , G06F17/30705 , G06K9/4652 , G06K9/6269
Abstract: 本发明公开了一种基于海报与剧情介绍的电影类型的快速分类方法,该方法包括:确定电影所属的类型集合,建立各种类型的电影的海报训练集和剧情介绍的训练集;提取待测电影的海报的特征,利用得到的每幅海报的特征及其对应的标签训练支持向量机得到海报的分类模型;提取待测电影的剧情介绍的文本的特征,利用得到的每个文本的特征及其对应的标签训练支持向量机得到文本的分类模型;用海报的分类模型,对待测的电影的海报进行预测得到结果Y1,然后再调用文本的分类模型对待测电影的剧情介绍进行预测得到结果Y2;最后将Y1和Y2进行“或“操作,得到最后的待测电影的类型。本发明能够在没有电影视频的情况下,对电影的类型实现快速、高准确率的预测。
-
公开(公告)号:CN104657468B
公开(公告)日:2018-07-31
申请号:CN201510075140.X
申请日:2015-02-12
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供种基于图像与文本的视频的快速分类方法,所述方法包括:分别关联多个视频的图像与多个视频类型、以及多个视频的文本与多个视频类型,从而生成对应视频类型的图像训练集及文本训练集;在每个所述图像训练集上分别提取图像特征信息进行训练从而创建图像预测模型,以及在每个所述文本训练集上提取文本特征信息进行训练从而创建文本预测模型;分别提取待检测的视频的图像特征信息在所述图像预测模型上和提取待检测的视频的文本特征信息在所述文本预测模型上进行预测,并对两个预测结果执行或运算作为检出类型。本发明所述方法能够实现对视频的快速分类。
-
公开(公告)号:CN104657468A
公开(公告)日:2015-05-27
申请号:CN201510075140.X
申请日:2015-02-12
Applicant: 中国科学院自动化研究所
CPC classification number: G06K9/627
Abstract: 本发明提供一种基于图像与文本的视频的快速分类方法,所述方法包括:分别关联多个视频的图像与多个视频类型、以及多个视频的文本与多个视频类型,从而生成对应视频类型的图像训练集及文本训练集;在每个所述图像训练集上分别提取图像特征信息进行训练从而创建图像预测模型,以及在每个所述文本训练集上提取文本特征信息进行训练从而创建文本预测模型;分别提取待检测的视频的图像特征信息在所述图像预测模型上和提取待检测的视频的文本特征信息在所述文本预测模型上进行预测,并对两个预测结果执行或运算作为检出类型。本发明所述方法能够实现对视频的快速分类。
-
-