-
公开(公告)号:CN103358612B
公开(公告)日:2016-10-19
申请号:CN201210081602.5
申请日:2012-03-26
Applicant: 中国科学院上海高等研究院 , 中国科学院上海微系统与信息技术研究所
IPC: B32B9/04 , H01M8/1041 , H01M8/1081
CPC classification number: Y02E60/523
Abstract: 本发明公开了一种直接甲醇燃料电池用的阻醇膜及其制法和应用,该阻醇膜由Nafion膜和复合层构成;其制法:1)将Nafion膜预处理,得膜A;2)将膜A浸泡在聚二烯丙基二甲基氯化铵溶液中,通过静电自组装的方法使膜A的表面带正电荷,形成膜B;3)将膜B浸泡在氧化石墨烯水溶液中,形成阻醇膜;本发明的阻醇膜可应用于膜电极集合体的制备,能提高直接甲醇燃料电池系统的性能及燃料的利用率,而且本发明的制备方法具有简单、易于操作、环境友好等特点,具有较好的应用前景。
-
公开(公告)号:CN101436676A
公开(公告)日:2009-05-20
申请号:CN200810203591.7
申请日:2008-11-28
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/522 , Y02P70/56
Abstract: 本发明涉及一种平板式微型直接醇类燃料电池组及其制作方法,包括平板微型电池,所述的平板式微型燃料电池组采用一体化阴极流场板或阳极流场板,所述的一体化阴极流场板或阳极流场板是指采用MEMS技术在硅片材料上按照一定排列方式集成制备至少两个单体电池流场,并且每个单电池流场表面具有独立的导电层图形,该导电层互相隔离,并具有确定的图形和焊接位点便于电池组的串联连接。本发明提供了一种制备工艺简单、结构封装体积小、电池组串联效率高的平板式微型燃料电池组及其制作方法。
-
公开(公告)号:CN101267041A
公开(公告)日:2008-09-17
申请号:CN200810036830.4
申请日:2008-04-29
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/522 , Y02P70/56
Abstract: 本发明公开了一种制备直接醇燃料电池膜电极的方法,其特征在于,包括以下步骤:A、将催化剂和第一粘结剂分散于分散剂中,得到浆料;B、将浆料在40~100℃加热10分钟~3小时,再超声10分钟~2小时,形成均匀的浆液;C、将浆液涂覆在支撑层上制成膜电极。本发明中的制备直接醇燃料电池膜电极的方法,方法简单,易于操作,通过调控第一粘接剂的聚集状态,显著提高了燃料电池的功率密度和稳定性。本发明制备的膜电极有效地提高了电极的催化活性和效率,提高燃料电池膜电极的催化效率和催化剂的利用率,有效地提高了电池的性能及其稳定性,降低了电池的极化损失,从而提高了燃料电池的性能。
-
公开(公告)号:CN103358612A
公开(公告)日:2013-10-23
申请号:CN201210081602.5
申请日:2012-03-26
Applicant: 上海中科高等研究院 , 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/523
Abstract: 本发明公开了一种直接甲醇燃料电池用的阻醇膜及其制法和应用,该阻醇膜由Nafion膜和复合层构成;其制法:1)将Nafion膜预处理,得膜A;2)将膜A浸泡在聚二烯丙基二甲基氯化铵溶液中,通过静电自组装的方法使膜A的表面带正电荷,形成膜B;3)将膜B浸泡在氧化石墨烯水溶液中,形成阻醇膜;本发明的阻醇膜可应用于膜电极集合体的制备,能提高直接甲醇燃料电池系统的性能及燃料的利用率,而且本发明的制备方法具有简单、易于操作、环境友好等特点,具有较好的应用前景。
-
公开(公告)号:CN101286564A
公开(公告)日:2008-10-15
申请号:CN200810038159.7
申请日:2008-05-28
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供了直接甲醇燃料电池一种复合阳极及制作方法,其特征在于所述的复合阳极由支撑层、扩散层和催化层构成,扩散层是由碳纳米管构成网络通道的结构。制备过程的典型特征为:(1)将一定量碳纳米管或添加了一定量其它碳材料的碳纳米管分散于异丙醇水溶液中,得浆料(A)。(2)向(A)中添加一定量聚四氟乙烯乳液,分散均匀,形成浆液(B)。(3)将上述(B)均匀地涂覆在支撑层上,经约300~350℃高温焙烧,即形成支撑层负载的扩散层(C)。(4)在(C)上涂覆一层铂钌催化剂,然后与阴极、Nafion膜一起热压制得膜电极集合体(MEA)。提高了燃料在阳极的传输效率,又降低了电池内阻,从而提高了电池的功率密度和使用寿命。
-
公开(公告)号:CN101083325A
公开(公告)日:2007-12-05
申请号:CN200710043391.5
申请日:2007-07-03
Applicant: 中国科学院上海微系统与信息技术研究所 , 苏州大学
Abstract: 本发明涉及一类燃料电池用纳米钯或钯铂金电催化剂的制备方法,其特征在于将一定量的钯盐或钯盐和铂盐的混合物(其中Pd原子比占金属量的10~100%)溶解于水中,加入适量的络合剂溶液后升温至0~80℃并恒温5分钟~8小时,然后冷却至室温,调节pH值到5~12后加入碳载体,再在0~80℃下滴加还原剂硼氢化钠、肼或甲酸等溶液,并保持10分钟~10小时,然后过滤、水洗、干燥,最后在惰性气氛或还原气氛中经100~300℃的热处理0.5~10h后,即为碳载钯或钯铂电催化剂。催化剂粒径可控、可调,组成相对可控,视热处理温度不同,获得的粒径为1.8nm到20nm以上,且粒子分布较窄,适合用作直接甲酸燃料电池阳极催化剂以及直接甲醇燃料电池抗甲醇的阴极催化剂。
-
公开(公告)号:CN100336068C
公开(公告)日:2007-09-05
申请号:CN200510025256.9
申请日:2005-04-21
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种用于驱动聚合酶链式反应微芯片阵列温度自动控制的方法及其装置,其特征在于该温度控制装置包括PC控制软件、数据采集卡、电源模块、信号转换电路及信号处理电路,各电路部分与供电电路相连。其温度控制原理是:温度信号转换电路把芯片的Pt温度传感器的电阻信号变成电压信号,经过信号处理电路将弱电压信号放大并滤波,经过A/D变换传入PC控制软件,在PC窗口显示实时温度一时间曲线,PC程序进行PID控制运算,经I/O输出反馈信号,调节芯片微加热器的电源开/关,实现对PCR微芯片的升、降温自动控制。提供的装置体积小、功耗低、热循环速度快、PCR扩增的效率高,是一种便携式的检测分析设备。
-
公开(公告)号:CN101662032B
公开(公告)日:2012-06-06
申请号:CN200910196042.6
申请日:2009-09-22
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/522 , Y02P70/56
Abstract: 本发明提供了一种直接醇类燃料电池膜电极集合体(MEA)阴极结构和制作方法,所述的阴极为双微孔层结构,显著改进了MEA的性能和稳定性。其制备过程的特征为:(1)、将碳粉和聚四氟乙烯(PTFE)乳液分散于异丙醇溶液形成均匀浆液,改变浆液中碳粉的类型及PTFE含量,得到不同组成配比的浆液。(2)、用喷涂等方式将浆液涂覆于支撑层,形成阳极微孔层,用相同方式将两种不同组成配比的浆液依次涂覆于同一支撑层,形成阴极双微孔层。(3)、用喷涂等方式将由催化剂和Nafion组成的墨水涂覆在阳极微孔层或阴极双微孔层上,形成阴极或阳极。(4)、将阳极、Nafion膜和阴极热压制得MEA。该结构增强了阴极氧气传输和水的反扩散,显著提高了电池的功率密度和稳定性。
-
公开(公告)号:CN101267041B
公开(公告)日:2010-09-08
申请号:CN200810036830.4
申请日:2008-04-29
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/522 , Y02P70/56
Abstract: 本发明公开了一种制备直接醇燃料电池膜电极的方法,其特征在于,包括以下步骤:A、将催化剂和第一粘结剂分散于分散剂中,得到浆料;B、将浆料在40~100℃加热10分钟~3小时,再超声10分钟~2小时,形成均匀的浆液;C、将浆液涂覆在支撑层上制成膜电极。本发明中的制备直接醇燃料电池膜电极的方法,方法简单,易于操作,通过调控第一粘接剂的聚集状态,显著提高了燃料电池的功率密度和稳定性。本发明制备的膜电极有效地提高了电极的催化活性和效率,提高燃料电池膜电极的催化效率和催化剂的利用率,有效地提高了电池的性能及其稳定性,降低了电池的极化损失,从而提高了燃料电池的性能。
-
公开(公告)号:CN101662032A
公开(公告)日:2010-03-03
申请号:CN200910196042.6
申请日:2009-09-22
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: Y02E60/522 , Y02P70/56
Abstract: 本发明提供了一种直接醇类燃料电池膜电极集合体(MEA)阴极结构和制作方法,所述的阴极为双微孔层结构,显著改进了MEA的性能和稳定性。其制备过程的特征为:(1)、将碳粉和聚四氟乙烯(PTFE)乳液分散于异丙醇溶液形成均匀浆液,改变浆液中碳粉的类型及PTFE含量,得到不同组成配比的浆液。(2)、用喷涂等方式将浆液涂覆于支撑层,形成阳极微孔层,用相同方式将两种不同组成配比的浆液依次涂覆于同一支撑层,形成阴极双微孔层。(3)、用喷涂等方式将由催化剂和Nafion组成的墨水涂覆在阳极微孔层或阴极双微孔层上,形成阴极或阳极。(4)、将阳极、Nafion膜和阴极热压制得MEA。该结构增强了阴极氧气传输和水的反扩散,显著提高了电池的功率密度和稳定性。
-
-
-
-
-
-
-
-
-