微管谐振腔量子阱红外探测器

    公开(公告)号:CN104538482A

    公开(公告)日:2015-04-22

    申请号:CN201410748129.0

    申请日:2014-12-09

    CPC classification number: H01L31/101 H01L31/0236 H01L31/0304 H01L31/035209

    Abstract: 本发明公开了一种微管谐振腔量子阱红外探测器,自下而上依次包括:衬底、缓冲层、牺牲层、金属下电极、金属上电极、螺旋管状的功能薄膜层,其中,螺旋管状功能薄膜层由应力层、下电极层、腐蚀阻挡层、量子阱层、减薄层组成。本发明将量子阱内嵌在微管的管壁中,利用谐振腔的共振原理,将入射光限制在管壁中并沿其传播从而被量子阱吸收。本发明的优点:一、光耦合能力强,能够将入射光限制在管壁中形成共振增强,从而提高量子阱的吸收,改善器件灵敏度和量子效率;二、更宽的探测视角,微管的螺旋结构能够接受180°方向内入射光;三、微管的直径可调性,便于用户设计,简单的腐蚀即可获得不同直径微管以满足器件不同探测波长需求。

    等离激元微腔耦合结构的高线性偏振度量子阱红外探测器

    公开(公告)号:CN103762220A

    公开(公告)日:2014-04-30

    申请号:CN201410021014.1

    申请日:2014-01-17

    Abstract: 本发明公开了一种等离激元微腔耦合结构的高线性偏振度量子阱红外探测器,该探测器由上层金属线条形成的金属光栅层、量子阱红外光电转换激活层和下层金属反射层组成。本发明的优点是:1.利用上层金属光栅与下层金属反射层之间等离激元共振所形成的电磁波近场耦合微腔的模式选择效应,使得能够进入到微腔的光子以那些能够与探测波长偏振模式形成共振的光子为主。2.进入到微腔中的光子其电矢量方向在微腔模式的调制下由x方向改变为z方向,能够被量子阱子带跃迁吸收形成光电转换过程。由于以上特点,本发明的偏振耦合结构能够极大地提高偏振响应的消光比,使探测器具有极高的偏振分辨能力。

    微管谐振腔量子阱红外探测器

    公开(公告)号:CN104733562B

    公开(公告)日:2016-09-28

    申请号:CN201510145512.1

    申请日:2015-03-31

    Abstract: 本发明公开了一种微管谐振腔量子阱红外探测器,自下而上依次包括:衬底、缓冲层、牺牲层、金属下电极、金属上电极、螺旋管状的功能薄膜层,其中,螺旋管状功能薄膜层由应力层、下电极层、腐蚀阻挡层、量子阱层、减薄层组成。本发明将量子阱内嵌在微管的管壁中,利用谐振腔的共振原理,将入射光限制在管壁中并沿其传播从而被量子阱吸收。本发明的优点:一、光耦合能力强,能够将入射光限制在管壁中形成共振增强,从而提高量子阱的吸收,改善器件灵敏度和量子效率;二、更宽的探测视角,微管的螺旋结构能够接受180o方向内入射光;三、微管的直径可调性,便于用户设计,简单的腐蚀即可获得不同直径微管以满足器件不同探测波长需求。

    适用于高光谱成像的波段选择性增强量子阱红外焦平面

    公开(公告)号:CN105161564B

    公开(公告)日:2017-05-03

    申请号:CN201510607541.5

    申请日:2015-09-22

    Abstract: 本发明公开了一种适用于高光谱成像的波段选择性增强量子阱红外焦平面。将等离激元微腔集成到QWIP焦平面像元,该微腔能够有效地捕获入射光子,将其局域在等离激元微腔内形成横向传播的法布里‑珀罗共振驻波,并且与微腔中的QWIP耦合转化为光电流从而提升焦平面器件的响应率性能。共振驻波的中心波长取决于微腔的几何尺寸,在不同的焦平面像元上设计制备不同尺寸的微腔将使像元的响应峰值波长也各不相同,形成像元的波段选择性响应。将所选择的波段与高光谱分光波段相对应地分布在焦平面像元上,使高光谱成像应用中各波段的像元响应率得的选择性提升,从而提升整个高光谱成像焦平面的探测灵敏度。

    微管谐振腔量子阱红外探测器

    公开(公告)号:CN104733562A

    公开(公告)日:2015-06-24

    申请号:CN201510145512.1

    申请日:2015-03-31

    Abstract: 本发明公开了一种微管谐振腔量子阱红外探测器,自下而上依次包括:衬底、缓冲层、牺牲层、金属下电极、金属上电极、螺旋管状的功能薄膜层,其中,螺旋管状功能薄膜层由应力层、下电极层、腐蚀阻挡层、量子阱层、减薄层组成。本发明将量子阱内嵌在微管的管壁中,利用谐振腔的共振原理,将入射光限制在管壁中并沿其传播从而被量子阱吸收。本发明的优点:一、光耦合能力强,能够将入射光限制在管壁中形成共振增强,从而提高量子阱的吸收,改善器件灵敏度和量子效率;二、更宽的探测视角,微管的螺旋结构能够接受180o方向内入射光;三、微管的直径可调性,便于用户设计,简单的腐蚀即可获得不同直径微管以满足器件不同探测波长需求。

    一种亚波长等离激元微腔光耦合结构

    公开(公告)号:CN204332979U

    公开(公告)日:2015-05-13

    申请号:CN201420597469.3

    申请日:2014-10-16

    Abstract: 本实用新型公开了一种亚波长等离激元微腔光耦合结构,通过等离激元微腔对入射光的传播方向和光场分布进行调制,使入射光被限制在微腔中传播,减小了光的逃逸,提高了光子的利用率。入射光场被集聚在微腔中使得强度得到极大的增强,通过在微腔中夹持光电转换材料能够形成高响应率的光电探测器。该耦合结构由上层周期性金属条块形成的金属光栅层、光电转换激活层和下层金属反射层组成。本实用新型的优点是:利用上层金属光栅与下层金属反射层之间等离激元共振所形成的电磁波近场耦合微腔的模式选择效应,使得进入到微腔的光子沿横向传播并形成驻波,既集聚了光场能量又增加了等效光吸收的长度,使得探测器响应率得到极大地提升。

Patent Agency Ranking