一种三维GeSn微纳尺度悬臂结构的制备方法

    公开(公告)号:CN106744657A

    公开(公告)日:2017-05-31

    申请号:CN201611126275.5

    申请日:2016-12-09

    CPC classification number: B81C1/0015 B81C1/00349 B81C1/00373

    Abstract: 本发明提供一种形变可控的三维GeSn微纳尺度悬臂结构的制备方法,其特征在于,该方法包括以下步骤:根据所需悬臂结构通过理论计算,设计GeSn薄膜的应力分布和厚度,进而设计所需生长的GeSn薄膜中Sn的组分及GeSn薄膜的厚度;然后外延生长GeSn薄膜,通过精确控制GeSn薄膜中Sn的分布及GeSn薄膜的厚度,调控该GeSn薄膜中的应力分布;根据GeSn薄膜的应力分布和悬臂结构图形,对该材料进行光刻和刻蚀,制作出所需悬臂结构。本发明克服了难以制备全金属实体的三维微纳结构的问题,直接在锗锡材料上制备而成的三维悬臂结构,在高温或者导电方面都比聚合物的三维微结构更有优势。

    一种三维GeSn微纳尺度悬臂结构的制备方法

    公开(公告)号:CN106744657B

    公开(公告)日:2018-11-27

    申请号:CN201611126275.5

    申请日:2016-12-09

    Abstract: 本发明提供一种形变可控的三维GeSn微纳尺度悬臂结构的制备方法,其特征在于,该方法包括以下步骤:根据所需悬臂结构通过理论计算,设计GeSn薄膜的应力分布和厚度,进而设计所需生长的GeSn薄膜中Sn的组分及GeSn薄膜的厚度;然后外延生长GeSn薄膜,通过精确控制GeSn薄膜中Sn的分布及GeSn薄膜的厚度,调控该GeSn薄膜中的应力分布;根据GeSn薄膜的应力分布和悬臂结构图形,对该材料进行光刻和刻蚀,制作出所需悬臂结构。本发明克服了难以制备全金属实体的三维微纳结构的问题,直接在锗锡材料上制备而成的三维悬臂结构,在高温或者导电方面都比聚合物的三维微结构更有优势。

    一种二维锡烯材料的制备方法

    公开(公告)号:CN105951055B

    公开(公告)日:2018-07-13

    申请号:CN201610436234.X

    申请日:2016-06-17

    Abstract: 本发明提供一种二维锡烯材料的制备方法,包括以下步骤:1)在单晶衬底上外延生长单层或多原子层的α‑Sn晶体薄膜,其中,所述单晶衬底与α‑Sn晶体薄膜通过sp3化学键相连;2)采用原子和/或离子和/或电子进行轰击,在所述单晶衬底与α‑Sn晶体薄膜的界面处形成钝化层或非晶态层以断开所述sp3化学键,所述α‑Sn晶体薄膜的Sn原子之间重构成sp2化学键形成一种二维锡烯材料。根据本发明提供的方法,采用常规的商用单晶衬底以及难度显著降低的常规外延方法即可实现大尺寸二维锡烯材料的制备,总之,本发明相对现有技术提供了一种衬底选择范围扩大的、可行的、易操作、简单的二维锡烯材料的制备方法。

    一种二维锡烯材料的制备方法

    公开(公告)号:CN105951055A

    公开(公告)日:2016-09-21

    申请号:CN201610436234.X

    申请日:2016-06-17

    CPC classification number: C23C16/18 C23C16/01 C23C16/56 C30B25/18 C30B25/186

    Abstract: 本发明提供一种二维锡烯材料的制备方法,包括以下步骤:1)在单晶衬底上外延生长单层或多原子层的α‑Sn晶体薄膜,其中,所述单晶衬底与α‑Sn晶体薄膜通过sp3化学键相连;2)采用原子和/或离子和/或电子进行轰击,在所述单晶衬底与α‑Sn晶体薄膜的界面处形成钝化层或非晶态层以断开所述sp3化学键,所述α‑Sn晶体薄膜的Sn原子之间重构成sp2化学键形成一种二维锡烯材料。根据本发明提供的方法,采用常规的商用单晶衬底以及难度显著降低的常规外延方法即可实现大尺寸二维锡烯材料的制备,总之,本发明相对现有技术提供了一种衬底选择范围扩大的、可行的、易操作、简单的二维锡烯材料的制备方法。

Patent Agency Ranking