一种基于协同进化卷积神经网络学习的遥感图像分类方法及装置

    公开(公告)号:CN113128323B

    公开(公告)日:2023-08-18

    申请号:CN202010047847.0

    申请日:2020-01-16

    Abstract: 本发明公开了一种基于协同进化卷积神经网络学习的遥感图像分类方法,属于图像处理技术领域。首先初始化多个不同优化方法的相同网络,将初始化的网络同时进行训练,选取一个时间间隔,在每个时间间隔后,选取在测试集上分类准确率最高的网络,保存其模型的全部参数并将保存的模型参数赋予协同训练中剩余的网络,进行网络的迭代训练,每次丢弃表现较差的模型参数,继承表现最好的模型参数。使得每个优化方法充分发挥其功能,达到优化最大化,提高收敛速度,达到较高的准确率。本发明可对大规模的高分辨率遥感图像进行场景分类,大大提高遥感图像分类的准确性,可用于自然灾害的检测与评估,环境监测等领域,减少判断与决策失误性,减少损失。

    一种基于协同进化卷积神经网络学习的遥感图像分类方法及装置

    公开(公告)号:CN113128323A

    公开(公告)日:2021-07-16

    申请号:CN202010047847.0

    申请日:2020-01-16

    Abstract: 本发明公开了一种基于协同进化卷积神经网络学习的遥感图像分类方法,属于图像处理技术领域。首先初始化多个不同优化方法的相同网络,将初始化的网络同时进行训练,选取一个时间间隔,在每个时间间隔后,选取在测试集上分类准确率最高的网络,保存其模型的全部参数并将保存的模型参数赋予协同训练中剩余的网络,进行网络的迭代训练,每次丢弃表现较差的模型参数,继承表现最好的模型参数。使得每个优化方法充分发挥其功能,达到优化最大化,提高收敛速度,达到较高的准确率。本发明可对大规模的高分辨率遥感图像进行场景分类,大大提高遥感图像分类的准确性,可用于自然灾害的检测与评估,环境监测等领域,减少判断与决策失误性,减少损失。

Patent Agency Ranking