-
公开(公告)号:CN118191775B
公开(公告)日:2024-11-05
申请号:CN202410291933.4
申请日:2024-03-14
Applicant: 中国工程物理研究院应用电子学研究所
IPC: G01S7/41
Abstract: 本发明提供了一种高功率微波后门强耦合参数提取方法及装置,包括:信号产生单元,包括信号源和信号发射器,信号发射器与信号源连接,信号发射器用于向待测目标发射探测信号;回波信号接收组件,用于接收回波信号;特征提取单元,与回波信号接收组件连接,特征提取单元包括时域信号采集模块和频域信号采集模块,时域信号采集模块用于提取回波信号中与强耦合相关的时域特征,频域信号采集模块用于提取回波信号中与强耦合相关的频域特征;计算单元,与特征提取单元连接,计算单元对提取到的强耦合时域特征和强耦合频域特征进行分析处理,得出目标强耦合参数。解决了相关技术中提取的高功率微波强耦合参数普适性不够的技术问题。
-
公开(公告)号:CN117852282B
公开(公告)日:2024-11-05
申请号:CN202410034387.6
申请日:2024-01-09
Applicant: 中国工程物理研究院应用电子学研究所
IPC: G06F30/20 , G06F18/2415 , G06F18/22 , G06F16/21
Abstract: 本发明提供了一种高功率微波装置数字化仿真后门毁伤效应评估方法及平台,包括:数字化仿真平台启动后,获取初始设定目标,并根据所获取的目标计算目标总健康值;获取初始设定的数字化仿真高功率微波装置,调用预设的高功率微波辐照特征指标库获取与初始设定的数字化仿真高功率微波装置数据相匹配的辐照特征信息;利用所获取的辐照特征信息,调用预设的毁伤效应特征指标库,得到与辐照特征信息相匹配的效应概率;效应概率内毁伤效应生效时,基于目标总健康值和辐照特征信息计算目标最终健康值,利用所得到的目标最终健康值调用健康度效应等级对照表匹配相应的毁伤效应等级,解决了相关技术中无法准确进行高功率微波装置对目标的效能预测评估的问题。
-
公开(公告)号:CN117872805B
公开(公告)日:2024-10-18
申请号:CN202410034384.2
申请日:2024-01-09
Applicant: 中国工程物理研究院应用电子学研究所
IPC: G05B17/02
Abstract: 本发明提供了一种高功率微波装置数字化仿真的天线控制方法及仿真平台,包括:数字化仿真平台启动后,基于预设的数字化仿真高功率微波装置获得数字化仿真高功率微波装置的部署信息及数字化仿真高功率微波装置天线的实时状态信息,基于预设的数字化仿真目标获取相应目标的运动信息;基于目标的运动信息并根据所获得的数字化仿真高功率微波装置的部署信息以及天线实时状态信息计算生成多个包含天线引导时间在内的引导方案;输出引导时间最短的第一引导方案,并基于第一引导方案实现对天线的控制,解决了相关技术中无法准确体现天线的加速、匀速、减速的运动过程,无法展示天线对目标跟踪引导、锁定及收敛过程的技术问题。
-
公开(公告)号:CN118114442B
公开(公告)日:2024-09-20
申请号:CN202410032281.2
申请日:2024-01-09
Applicant: 中国工程物理研究院应用电子学研究所
Abstract: 本发明提供了一种高功率微波装置数字化仿真平台及其目标排序方法,包括:获取高功率微波装置和目标的当前状态参数;根据上述参数,计算目标相对于高功率装置的第一相对数据;获取高功率微波装置天线的当前状态参数,并利用第一相对数据,得到高功率装置天线的引导参数,并基于引导参数得到关于高功率装置对于目标的目标打击代价数据;利用所计算得到的引导参数,计算高功率微波装置天线引导到位时的目标相对于高功率装置的第二相对数据,基于第二相对数据计算得到关于目标对于高功率装置的目标威胁度数据;利用所计算得到的目标打击代价数据和目标威胁度数据进行目标排序,解决了在仿真模拟中,还缺乏相关的数字化仿真算法的技术问题。
-
公开(公告)号:CN112130004B
公开(公告)日:2022-07-01
申请号:CN202011026825.2
申请日:2020-09-25
Applicant: 中国工程物理研究院应用电子学研究所
Abstract: 本发明涉及一种电路级高功率微波后门耦合实时测试装置及方法,属于高功率微波测试技术领域,所述电路级高功率微波后门耦合实时测试装置包括HPM辐照环境产生模块、效应物置放平台、测试探头组件以及测试信号处理单元,其中,所述效应物置放平台和测试探头组件位于微波暗室内,所述HPM辐照环境产生模块和测试信号处理单元位于电磁屏蔽间内,本发明在微波暗室中对效应物实现电路级在线测试,实时监测电路关键节点耦合电信号,同时,实现对多种设定参数HPM辐射场以及多种效应物状态的电路级在线测试,通过不同测量需求定制测试探头组件,满足多尺度、多频段、多种电信号的测试需求。
-
公开(公告)号:CN110132409B
公开(公告)日:2021-03-12
申请号:CN201910408694.5
申请日:2019-05-16
Applicant: 中国工程物理研究院应用电子学研究所
Abstract: 本发明公开了一种高功率微波功率密度/场强监测装置及方法,该装置包括信号接收模块、信号接收模块和反馈模块,其中信号接收模块感应高功率微波信号并转换为可识别信号,信号处理模块将可识别信号进行处理与比较,反馈模块将处理与比较后得到的信号进行分级显示。本发明能够快速、有效的反应出监测点的功率密度/场强数值,可通过手动复位进行多次测量,并能满足受试设备表面、内部关键位置的监测,为高功率微波试验提供准确的试验数据,提高试验效率,降低试验误差。本发明方法还可拓展用于高功率微波功率密度/场强均匀区测试、电磁场可视化、电磁辐射安全区监测以及电磁辐射个人剂量等方向。
-
公开(公告)号:CN112009721A
公开(公告)日:2020-12-01
申请号:CN202010714321.3
申请日:2020-07-22
Applicant: 中国工程物理研究院应用电子学研究所
IPC: B64F5/60
Abstract: 本发明公开了一种微小型多旋翼无人机的高功率微波效应试验装置,所述试验装置至少包括仿真飞行平台、视频监控模块、全球定位信号产生模块、HPM辐照环境产生模块以及装置控制系统;仿真飞行平台至少包括:机械转动平台、驱动单元、支撑杆、支撑感应控制单元;视频监控模块被配置为用于实现待试验无人机的监控,全球定位信号产生模块被配置为用于为待试验无人机产生设定位置、设定高度的定位信号;HPM辐照环境产生模块被配置为用于为待试验无人机施加设定参数的HPM辐射场。通过本试验装置的结构设计解决了目前微小型多旋翼无人机高功率微波效应试验中无法兼顾模拟无人机飞行状态、多方位监控无人机效应以及精准控制无人机所处环境场功率密度的问题。
-
公开(公告)号:CN108232375B
公开(公告)日:2020-08-07
申请号:CN201810039150.1
申请日:2018-01-16
Applicant: 中国工程物理研究院应用电子学研究所
IPC: H01P1/16
Abstract: 本发明涉及高功率微波技术领域一种同轴TEM模式变换到扇形TE10再变换到同轴TEM模式的模式变换器。本发明涉及高功率同轴波导模式变换器,将同轴输出波导中传播的TEM波通过模式变换器变换到扇形区域传输的TE10模式,从而在同轴波导中产生无微波传输的区域。无微波传输区域具有两个目的:其一、同轴波导的内导体可以通过无微波传输区域与外导体固定装配在一起,实现同轴波导内外导体的可靠固定。其二、可以在无微波传输的部分区域开孔,为高功率微波放大器提供输入波导的通道。对TEM模式到TE10模式变换器镜像得到一个TE10模式到TEM模式的变换器。最终两个模式变换器合二为一实现TEM模式‑扇形TE10‑TEM模式的变换。
-
公开(公告)号:CN107968030B
公开(公告)日:2019-04-23
申请号:CN201711470432.9
申请日:2017-12-29
Applicant: 中国工程物理研究院应用电子学研究所
Abstract: 本发明提供了一种内同轴注入大过模同轴相对论速调管放大器,该方案包括有同轴内导体、同轴外导体、输出耦合器、输出波导、输出波导模式变换器、收集极、输入波导模式变换器、矩形输入波导、内部同轴输入波导和径向线波导耦合器。该方案中输入腔的耦合系统采用了内同轴波导耦合系统,激励段模式角向理想均匀分布,所以在输入腔内可以激励角向均匀的TM01模式,抑制非对称模式的激励,从而保证器件运行时不会出现非对称模式自激振荡。具有输入腔角向模式激励均匀,空间电荷效应弱,功率容量高,高增益,束波转换效率高,长脉冲运行的特点,可以实现高功率毫米波的高增益稳定放大辐射。
-
公开(公告)号:CN105974369A
公开(公告)日:2016-09-28
申请号:CN201610492033.1
申请日:2016-06-29
Applicant: 中国工程物理研究院应用电子学研究所
IPC: G01S7/02
CPC classification number: G01S7/02
Abstract: 本发明公开了一种多路全相位微波数控移相器控制系统,所述控制系统包括远程端和本地端,所述远程端包括依次连接的控制软件、计算机和光纤收发器A,所述本地端包括依次连接的光纤收发器B、串口服务器、时序控制器和数控移相器,所述光纤收发器A与所述光纤收发器B互相配对使用,收发光纤信号。采用本系统使得数控移相器在高频范围实现了0~360º大范围的移相,采用“串口服务器+时序控制器”的方式设计多路移相器的控制系统,简化外部线缆连接,提高系统的可靠性,有效解决在移相器在180°(反向)之后相位精度变小,存在非线性变化的问题,保证移相精度小于2.5º。
-
-
-
-
-
-
-
-
-