一种二极管直接泵浦拉曼光纤激光器及其光谱合成方法

    公开(公告)号:CN108683063B

    公开(公告)日:2021-02-09

    申请号:CN201810506547.7

    申请日:2018-05-24

    Abstract: 本发明提供了一种二极管直接泵浦拉曼光纤激光器及其光谱合成方法,该方案采用9xxnm二极管直接泵浦拉曼光纤激光器作为新的合成子束,将光谱合成的合成谱宽拓展至900nm‑1030nm波段,进而极大拓展光谱合成子束数量,随着二极管直接泵浦拉曼光纤激光技术的发展,最终进一步有力提高光谱合成的输出功率。同时,本发明还可以看作是对原有二极管激光器光谱合成技术的有益改进,通过拉曼效应的光束净化作用,将原有光束质量不佳的二极管激光转化为理想的可合成光束,进而使合成效率与光束质量得以提升。

    用于高功率窄谱光纤放大的混沌光源全光相位调制种子源

    公开(公告)号:CN111834869A

    公开(公告)日:2020-10-27

    申请号:CN202010321968.X

    申请日:2020-04-22

    Abstract: 本发明公开了一种用于高功率窄谱光纤放大的混沌光源全光相位调制种子源,涉及高能激光技术领域。所述混沌光源全光相位调制种子源包含混沌激光调制光源、单频激光器、第一波分复用器、全光相位调制器及第二波分复用器。与现有技术相比本发明技术方案能针对现有基于射频信号源和电光调制器的相位调制种子源系统复杂、价格昂贵的不足,突破射频信号源输出带宽上的“电子瓶颈”,解决传统射频相位调制种子源成本高,抗电磁干扰差等技术痛点,实现种子光的有效调制和激光的高质量的光束输出。并且本发明提供的混沌光源全光相位调制种子源实现了全光调制,相比于现有技术的电频调制,本发明方案结构简单、鲁棒性强,能降低激光系统研制成本和复杂性,为窄谱光纤激光的种子源提供一种新型高性能低成本的技术解决方案。

    一种高功率全光纤激光器指示光装置

    公开(公告)号:CN104810711B

    公开(公告)日:2017-11-14

    申请号:CN201510272979.2

    申请日:2015-05-26

    Abstract: 本发明提供了一种高功率全光纤激光器指示光装置的技术方案,该方案包括有尾纤输出的指示光激光器、合束器、高功率环形器、激光器系统和石英管;高功率环形器包括有三个端口,端口分别为port1、port2和port3;指示光激光器的尾纤输出端与port1端口连接;合束器的信号输入端与port2端口相连接;适应管内设置有无芯光纤;无芯光纤与port3端口连接;合束器的输出端与激光器系统连接。该方案能在全光纤链路中注入指示光的同时,有效处理掉光纤链路的反向信号光,保障指示激光器的安全,为全光纤结构高功率激光器的工程化提供技术手段。

    用于高功率窄谱光纤放大的混沌光源全光相位调制种子源

    公开(公告)号:CN111834869B

    公开(公告)日:2021-09-21

    申请号:CN202010321968.X

    申请日:2020-04-22

    Abstract: 本发明公开了一种用于高功率窄谱光纤放大的混沌光源全光相位调制种子源,涉及高能激光技术领域。所述混沌光源全光相位调制种子源包含混沌激光调制光源、单频激光器、第一波分复用器、全光相位调制器及第二波分复用器。与现有技术相比本发明技术方案能针对现有基于射频信号源和电光调制器的相位调制种子源系统复杂、价格昂贵的不足,突破射频信号源输出带宽上的“电子瓶颈”,解决传统射频相位调制种子源成本高,抗电磁干扰差等技术痛点,实现种子光的有效调制和激光的高质量的光束输出。并且本发明提供的混沌光源全光相位调制种子源实现了全光调制,相比于现有技术的电频调制,本发明方案结构简单、鲁棒性强,能降低激光系统研制成本和复杂性,为窄谱光纤激光的种子源提供一种新型高性能低成本的技术解决方案。

    一种分步式制备光纤合束器的方法

    公开(公告)号:CN103576239B

    公开(公告)日:2015-09-16

    申请号:CN201310560566.5

    申请日:2013-11-12

    Abstract: 本发明公开了一种分步式制备光纤合束器的方法,该方法通过用设计好的模具,将多根光纤按规则排列,然后用热缩管将光纤牢牢的固定在一起,然后用光纤拉锥机将裸露的光纤熔融拉锥,最后采用常规切割刀将光纤切割并完成其与输出光纤的熔接。采用本发明方法固定后的输入光纤束可直接采用市面上的V形槽夹具所固定,从而方便的实现了对拉锥后的输入光纤束的切割和熔接,省去了对造价昂贵的光纤合束器制备一体机的需求,极大的降低了成本,节省了人力物力。利用本发明的方法固定的输入光纤束在拉锥过程中无须对裸光纤段扭转,从而可减少泵浦光的耦合损耗。

    一种高功率全光纤激光器在线功率监测装置及其封装方法

    公开(公告)号:CN104713643A

    公开(公告)日:2015-06-17

    申请号:CN201510007649.0

    申请日:2015-01-08

    Abstract: 本发明提供了一种高功率全光纤激光器在线功率监测装置及其封装方法的技术方案,该方案采用在全光纤激光器的各级输出与下一级之间的熔接点处,涂覆有低折射率涂覆胶,以加固光纤熔接点,将固定有光电探测器的金属夹具与该处熔接点封装在一起,将该装置紧贴激光器冷却热沉放置,使熔接点和光电探头的产热由金属夹具与热沉之间的热传导而带走,能够不损伤光纤,也不会破坏整个全光纤激光器结构,且光电探测器响应速度快,故可实现对激光器功率实现快速、实时、在线监测,并通过与激光器系统电源形成闭环控制,可有效保护激光器系统,测得的功率值准确度较高。

    一种基于分级散热的光纤激光放大器

    公开(公告)号:CN116316009A

    公开(公告)日:2023-06-23

    申请号:CN202310319069.X

    申请日:2023-03-29

    Abstract: 本发明公开了一种基于分级散热的光纤激光放大器,涉及高亮度光纤激光领域,包括:光纤激光种子源、尾纤半导体泵浦源、一级光纤振荡器组件、二级光纤激光放大器组件;所述半导体泵浦光与激光种子光合束注入到一级光纤振荡器组件中,以较低的量子亏损将低亮度的半导体泵浦光通过激光振荡过程产生较高亮度的过渡激光;所述二级光纤激光放大器组件将过渡激光转化到激光种子光上,输出高亮度主激光;本发明,在尾纤半导体泵浦源构型基础上,有效将量子亏损产热分到两级组件上散热,同时也降低了单级组件上的产热集中度,提升了放大器的可靠性。

    一种可实现高效弯曲选模的光纤冷却装置

    公开(公告)号:CN110698053A

    公开(公告)日:2020-01-17

    申请号:CN201911063956.5

    申请日:2019-11-04

    Abstract: 本发明公开了一种可实现高效弯曲选模的光纤冷却装置,包括光纤和水冷板,所述水冷板上设置光纤槽道;所述光纤槽道为多个弧形槽道两两连接组成的闭合槽道,相邻两个弧形槽道相切并采用圆弧连接;所述光纤槽道内设置容纳光纤的光纤槽,所述光纤槽盘绕在光纤槽道内;所述光纤沿光纤槽道中的光纤槽盘绕于水冷板上。采用本发明的一种可实现高效弯曲选模的光纤冷却装置,能增加高阶模式激光的损耗,实现光纤激光高光束质量输出,具有高紧凑型、高效高阶模滤除、搭建便易性等特点。

Patent Agency Ranking