-
公开(公告)号:CN104537105B
公开(公告)日:2017-09-26
申请号:CN201510018744.0
申请日:2015-01-14
Applicant: 中国人民解放军信息工程大学
IPC: G06F17/30
Abstract: 本发明涉及一种基于Web地图的网络实体地标自动挖掘方法,属于网络应用技术领域。本发明首先采用不同的Web地图获取各地区的特定类型机构的信息作为候选地标,接着利用搜索引擎或Google地图,进一步获取机构的Web服务主页域名;然后利用域名解析技术,获取机构Web服务器的IP地址;对机构Web服务器的IP地址和WWW域名的映射关系、承载Web服务的主机为共享主机的可能性进行评估,得到候选地标的可信度,最后输出可信度高于设定值的地标作为挖掘出的有效网络实体地标。通过上述过程,本发明可以获得数量充足、精度较高的地标信息,有效地弥补了传统人工标注或获取地标信息方法带来的地标密度不高、地理位置精度不够等不足。
-
公开(公告)号:CN105224593A
公开(公告)日:2016-01-06
申请号:CN201510526575.1
申请日:2015-08-25
Applicant: 中国人民解放军信息工程大学
IPC: G06F17/30
CPC classification number: G06F16/907
Abstract: 本发明涉及短暂上网事务中频繁共现账号挖掘方法,有效解决对单个上网账号的行为审计扩大到相关的多种应用、多个账号上,从而实现对用户上网行为的跨数据流跟踪和审计的问题,方法是,基于网络分流技术,在网络关口处镜像网络原始数据,基于浮动关键字匹配、正则表达式过滤,对网络中不同应用对应的数据流进行识别,提取社交应用的用户上网数据,按时间和上网地址进行汇总整理,形成上网短暂事务数据库,对待分析的用户上网原始流量所对应的事务数据库中的事务数据,找出频繁项集,计算项集间的重叠率,对频繁项集进行合并,得到归属于同一社会人的多个网络账号,本发明方法简单、易操作,能准确发现隐藏在网络通信流中网络帐号之间的关联性。
-
公开(公告)号:CN106886572B
公开(公告)日:2020-06-19
申请号:CN201710035828.4
申请日:2017-01-18
Applicant: 中国人民解放军信息工程大学
IPC: G06F16/953 , G06F16/36 , G06N5/04
Abstract: 本发明涉及一种基于Markov逻辑网的知识图谱关系类型推测方法及其装置,该装置包含:推理规则获取模块,用于根据数据集知识图谱已知节点间的路径特征生成推理规则;可信度权重学习模块,用于通过Markov逻辑网对推理规则进行可信度权重学习并获取带权重的推理规则;概率推理模块,用于根据带权重的推理规则对待推测节点间存在的关系类型进行概率推理,获取待推测节点间的关系类型概率;关系类型确定模块,用于根据概率推理模块获取的关系类型概率,选取较大概率值的关系类型,作为待推测节点间的关系类型。本发明实现知识图谱中推理规则的自动学习与节点间关系类型的概率推理,有效保证节点间可能存在的关系类型推测的准确率。
-
公开(公告)号:CN104991956A
公开(公告)日:2015-10-21
申请号:CN201510431015.8
申请日:2015-07-21
Applicant: 中国人民解放军信息工程大学
CPC classification number: G06F17/30864 , G06Q50/01
Abstract: 本发明涉及基于主题概率模型的微博传播群体划分与活跃度评估方法,有效解决按传播群体划分,将参与微博话题传播的账户划分为多个群组,量化每个群组中活跃的微博账户,方法是,以特定事件的关键词为基础,获取微博具体文本信息以及参与微博传播的账户集合,以单个微博的文本内容以及参与微博的账户集合输入,构造参与人员表,对样本库中的每一条微博基于主题概率生成模型,从构建的词汇表和参与人员表中根据模型中的群体-主题,主题-词以及群体-人抽样出词和参与人员,采用吉布斯抽样的方法进行计算,采用归并排序算法对每个主题下所包含的单词以及每个群体中所包含的人进行排序,本发明方法简单,及时掌握微博热点、情感倾向和舆论引导。
-
公开(公告)号:CN106411921B
公开(公告)日:2019-05-14
申请号:CN201610938684.9
申请日:2016-10-31
Applicant: 中国人民解放军信息工程大学
IPC: H04L29/06
Abstract: 本发明涉及一种基于因果贝叶斯网络的多步攻击预测方法,首先采用频繁模式挖掘攻击场景样本中的多步攻击模式,通过因果贝叶斯网络模型刻画多步攻击模式,在此基础上通过攻击证据来计算未来攻击发生的概率,实现网络多步攻击的下一步攻击行为以及攻击者的攻击意图的预测。本发明优化了采用人工构建网络攻击结构图的多步攻击预测方法,基于频繁序列模式自动挖掘多步攻击模式,并借助因果贝叶斯网络刻画攻击模式、学习网络参数、预测下一步攻击和攻击意图,提高了对未知的、变化的多步攻击模式的攻击预测能力,能够快速、准确地预测多步攻击的下一步攻击手段和最终攻击意图,对保护网络和计算机信息安全具有重要的现实意义。
-
公开(公告)号:CN104991956B
公开(公告)日:2018-07-31
申请号:CN201510431015.8
申请日:2015-07-21
Applicant: 中国人民解放军信息工程大学
Abstract: 本发明涉及基于主题概率模型的微博传播群体划分与活跃度评估方法,有效解决按传播群体划分,将参与微博话题传播的账户划分为多个群组,量化每个群组中活跃的微博账户,方法是,以特定事件的关键词为基础,获取微博具体文本信息以及参与微博传播的账户集合,以单个微博的文本内容以及参与微博的账户集合输入,构造参与人员表,对样本库中的每条微博基于主题概率生成模型,从构建的词汇表和参与人员表中根据模型中的群体‑主题,主题‑词以及群体‑人抽样出词和参与人员,采用吉布斯抽样的方法进行计算,采用归并排序算法对每个主题下所包含的单词以及每个群体中所包含的人进行排序,本发明方法简单,及时掌握微博热点、情感倾向和舆论引导。
-
公开(公告)号:CN105407103A
公开(公告)日:2016-03-16
申请号:CN201510952381.8
申请日:2015-12-19
Applicant: 中国人民解放军信息工程大学
IPC: H04L29/06
CPC classification number: H04L63/1425 , H04L63/1441
Abstract: 本发明涉及基于多粒度异常检测的网络威胁评估方法,可有效解决现有基于网络数据包或基于网络流量的威胁态势评估技术不能很好地适应高速网络环境下快速准确识别攻击事件、感知威胁态势的问题,方法是,利用基于包的粗粒度异常检测,分析出含有异常网络流量的时间片;再通过基于流的细粒度异常检测,对异常时间片的网络流量,进行流重组、提取流特征属性,利用流特征的异常检测算法判断出攻击类型;最后,对检测出的威胁事件,量化评估当前网络受威胁的严重程度,本发明方法易操作,可高精度实时检测出网络遭受的威胁事件的严重程度,有助于网络工作人员及时掌握当前网络遭受的安全威胁,有时采取有效地应急响应措施。
-
公开(公告)号:CN105224593B
公开(公告)日:2019-08-16
申请号:CN201510526575.1
申请日:2015-08-25
Applicant: 中国人民解放军信息工程大学
IPC: G06F16/907
Abstract: 本发明涉及短暂上网事务中频繁共现账号挖掘方法,有效解决对单个上网账号的行为审计扩大到相关的多种应用、多个账号上,从而实现对用户上网行为的跨数据流跟踪和审计的问题,方法是,基于网络分流技术,在网络关口处镜像网络原始数据,基于浮动关键字匹配、正则表达式过滤,对网络中不同应用对应的数据流进行识别,提取社交应用的用户上网数据,按时间和上网地址进行汇总整理,形成上网短暂事务数据库,对待分析的用户上网原始流量所对应的事务数据库中的事务数据,找出频繁项集,计算项集间的重叠率,对频繁项集进行合并,得到归属于同一社会人的多个网络账号,本发明方法简单、易操作,能准确发现隐藏在网络通信流中网络帐号之间的关联性。
-
公开(公告)号:CN105407103B
公开(公告)日:2018-06-29
申请号:CN201510952381.8
申请日:2015-12-19
Applicant: 中国人民解放军信息工程大学
IPC: H04L29/06
Abstract: 本发明涉及基于多粒度异常检测的网络威胁评估方法,可有效解决现有基于网络数据包或基于网络流量的威胁态势评估技术不能很好地适应高速网络环境下快速准确识别攻击事件、感知威胁态势的问题,方法是,利用基于包的粗粒度异常检测,分析出含有异常网络流量的时间片;再通过基于流的细粒度异常检测,对异常时间片的网络流量,进行流重组、提取流特征属性,利用流特征的异常检测算法判断出攻击类型;最后,对检测出的威胁事件,量化评估当前网络受威胁的严重程度,本发明方法易操作,可高精度实时检测出网络遭受的威胁事件的严重程度,有助于网络工作人员及时掌握当前网络遭受的安全威胁,有时采取有效地应急响应措施。
-
公开(公告)号:CN105357228B
公开(公告)日:2018-03-20
申请号:CN201510952382.2
申请日:2015-12-19
Applicant: 中国人民解放军信息工程大学
IPC: H04L29/06
Abstract: 本发明涉及基于动态阈值的突发流量检测方法,可有效实现高速网络环境下突发流量的实时在线检测,解决采用固定阈值的方法不能很好适应动态变化的网络环境的问题,其解决解决的技术方案是,根据正常历史流量的源IP熵值动态调整阈值大小,并引入滑动窗口机制,通过比较当前检测值与滑动窗口中平均熵值的差值是否超过动态阈值来检测突发流量,步骤包括有:最初滑动窗口的生成,参考值的生成,当前检测值的生成,当前检测值异常判定及正常流量的处理和突发流量的处理,本发明检测方法快速、简单、检测率高,误报率低,有效保证网络安全,有很强的实用性,经济和社会效益巨大。
-
-
-
-
-
-
-
-
-