-
公开(公告)号:CN118244645B
公开(公告)日:2024-10-01
申请号:CN202410622315.3
申请日:2024-05-20
Applicant: 中南大学
IPC: G05B13/04
Abstract: 本发明提供一种基于云边协同的氧化铝溶出过程苛性比值控制方法与系统,系统包括端侧、边缘侧和云侧;端侧,实时产生氧化铝溶出过程的数据信息;边缘侧,包括DCS控制系统和边缘计算设备,DCS控制系统采集端侧产生的数据信息并反馈给边缘计算设备;边缘计算设备上部署有云侧下发的苛性比值软测量模型和MPC算法,及模型参数更新请求策略;云侧,部署有苛性比值软测量模型和模型参数求解算法,收到边缘侧的模型参数更新请求信号后,辨识当前苛性比值软测量模型参数进行模型更新;云侧包括模型下发模块;MPC算法基于更新的苛性比值软测量模型计算最优控制量以控制端侧;本发明能实现氧化铝溶出过程苛性比值的高精度稳定安全控制。
-
公开(公告)号:CN118197453B
公开(公告)日:2024-10-01
申请号:CN202410617232.5
申请日:2024-05-17
Applicant: 中南大学
Abstract: 本发明提供一种氧化铝溶出过程苛性比值软测量建模方法,先构建考虑实时固相含铝浓度的氧化铝溶出过程铝溶解微观动力学模型,用于反映主反应的反应速率#imgabs0#;再基于溶出工艺流程的质量平衡和能量守恒,以及主反应的反应速率#imgabs1#,获得基于氧化铝溶出过程铝溶解微观动力学模型的氧化铝浓度方程,得氧化铝浓度#imgabs2#;基于副反应的影响,获得溶出过程溶液中苛性钠浓度方程,得苛性氧化钠的浓度#imgabs3#;然后基于氧化铝浓度#imgabs4#和苛性氧化钠的浓度#imgabs5#,建立溶出过程苛性比值软测量模型,最后结合工业实际数据辨识融合和优化求解算法,获得溶出过程苛性比值软测量模型的未知参数;本发明构建的氧化铝溶出过程苛性比值软测量模型的预测精度高,平均相对误差在1%以内。
-
公开(公告)号:CN118197453A
公开(公告)日:2024-06-14
申请号:CN202410617232.5
申请日:2024-05-17
Applicant: 中南大学
Abstract: 本发明提供一种氧化铝溶出过程苛性比值软测量建模方法,先构建考虑实时固相含铝浓度的氧化铝溶出过程铝溶解微观动力学模型,用于反映主反应的反应速率#imgabs0#;再基于溶出工艺流程的质量平衡和能量守恒,以及主反应的反应速率#imgabs1#,获得基于氧化铝溶出过程铝溶解微观动力学模型的氧化铝浓度方程,得氧化铝浓度#imgabs2#;基于副反应的影响,获得溶出过程溶液中苛性钠浓度方程,得苛性氧化钠的浓度#imgabs3#;然后基于氧化铝浓度#imgabs4#和苛性氧化钠的浓度#imgabs5#,建立溶出过程苛性比值软测量模型,最后结合工业实际数据辨识融合和优化求解算法,获得溶出过程苛性比值软测量模型的未知参数;本发明构建的氧化铝溶出过程苛性比值软测量模型的预测精度高,平均相对误差在1%以内。
-
公开(公告)号:CN118244645A
公开(公告)日:2024-06-25
申请号:CN202410622315.3
申请日:2024-05-20
Applicant: 中南大学
IPC: G05B13/04
Abstract: 本发明提供一种基于云边协同的氧化铝溶出过程苛性比值控制方法与系统,系统包括端侧、边缘侧和云侧;端侧,实时产生氧化铝溶出过程的数据信息;边缘侧,包括DCS控制系统和边缘计算设备,DCS控制系统采集端侧产生的数据信息并反馈给边缘计算设备;边缘计算设备上部署有云侧下发的苛性比值软测量模型和MPC算法,及模型参数更新请求策略;云侧,部署有苛性比值软测量模型和模型参数求解算法,收到边缘侧的模型参数更新请求信号后,辨识当前苛性比值软测量模型参数进行模型更新;云侧包括模型下发模块;MPC算法基于更新的苛性比值软测量模型计算最优控制量以控制端侧;本发明能实现氧化铝溶出过程苛性比值的高精度稳定安全控制。
-
-
-