一种基于张量火车分解模型的交通大数据填充方法

    公开(公告)号:CN111310117A

    公开(公告)日:2020-06-19

    申请号:CN202010058620.6

    申请日:2020-01-19

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于张量火车分解模型的交通大数据填充方法,该方法包括:构建包含5个交通数据维度的五维张量模型;通过L2正则约束,构建初始基于张量火车分解模型的填充模型;对所述填充模型中进行共轭梯度优化,获得每个核向量的优化后的填充模型;或对所述的填充模型,进行迹范数优化,得到最终填充模型;通过所述第一填充模型和/或第二填充模型,进行交通大数据填充。本发明提供的方法能够提高数据填充的精度,在高丢失率下能够保持填充稳定性。

    一种基于张量火车分解模型的交通大数据填充方法

    公开(公告)号:CN111310117B

    公开(公告)日:2023-03-31

    申请号:CN202010058620.6

    申请日:2020-01-19

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于张量火车分解模型的交通大数据填充方法,该方法包括:构建包含5个交通数据维度的五维张量模型;通过L2正则约束,构建初始基于张量火车分解模型的填充模型;对所述填充模型中进行共轭梯度优化,获得每个核向量的优化后的填充模型;或对所述的填充模型,进行迹范数优化,得到最终填充模型;通过所述第一填充模型和/或第二填充模型,进行交通大数据填充。本发明提供的方法能够提高数据填充的精度,在高丢失率下能够保持填充稳定性。

    一种基于多线性增广拉格朗日乘子法的张量数据恢复方法

    公开(公告)号:CN111274525B

    公开(公告)日:2023-04-07

    申请号:CN202010061279.X

    申请日:2020-01-19

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于多线性增广拉格朗日乘子法的张量数据恢复方法,包括:根据受污染的高维数据的结构和多模式特性构建张量模型;根据张量模型构建包括低秩项和稀疏项且具有约束条件的第一目标函数;将第一目标函数转换成不包括松弛项且具有不同约束条件的第二目标函数,第二目标函数包括分别涉及低秩项和稀疏项的第一项和第二项;对第二目标函数进行优化然后利用多线性增广拉格朗日乘子法去约束得到第三目标函数;求解第三目标函数得到真实数据和污染数据。本发明通过对目标函数进行转换加之改变其约束条件并采用多线性增广拉格朗日乘子法去约束,提高了张量恢复精度并降低了计算复杂度。

    一种基于多线性增广拉格朗日乘子法的张量数据恢复方法

    公开(公告)号:CN111274525A

    公开(公告)日:2020-06-12

    申请号:CN202010061279.X

    申请日:2020-01-19

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于多线性增广拉格朗日乘子法的张量数据恢复方法,包括:根据受污染的高维数据的结构和多模式特性构建张量模型;根据张量模型构建包括低秩项和稀疏项且具有约束条件的第一目标函数;将第一目标函数转换成不包括松弛项且具有不同约束条件的第二目标函数,第二目标函数包括分别涉及低秩项和稀疏项的第一项和第二项;对第二目标函数进行优化然后利用多线性增广拉格朗日乘子法去约束得到第三目标函数;求解第三目标函数得到真实数据和污染数据。本发明通过对目标函数进行转换加之改变其约束条件并采用多线性增广拉格朗日乘子法去约束,提高了张量恢复精度并降低了计算复杂度。

Patent Agency Ranking