-
公开(公告)号:CN118246595B
公开(公告)日:2025-03-25
申请号:CN202410334835.4
申请日:2024-03-22
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
IPC: G06Q10/04 , G06Q50/02 , G06F16/29 , G06F17/15 , G06F18/15 , G06F18/2415 , G06F18/25 , G06N3/0455 , G06N3/08
Abstract: 一种美国白蛾病虫害发生概率预测方法、电子设备及存储介质,属于美国白蛾病虫害预测技术领域。为高效、准确的预测美国白蛾病虫害,本发明采集美国白蛾病虫害的历史发生数据、森林生态环境数据以及气象数据,进行数据清洗和归一化处理;利用皮尔逊相关系数分析预处理后的数据对美国白蛾病虫害的影响力以及数据间的相关性,提取与国白蛾病虫害的影响力相关性最大的相关变量,构建训练数据集和测试数据集;基于Transformer神经网络构建美国白蛾病虫害发生概率预测模型;设置美国白蛾病虫害发生概率预测准确率评价指标;实时获取监测数据,利用美国白蛾病虫害发生概率预测模型进行模拟实验,对美国白蛾病虫害发生概率进行预测。
-
公开(公告)号:CN118246595A
公开(公告)日:2024-06-25
申请号:CN202410334835.4
申请日:2024-03-22
Applicant: 东北林业大学 , 国家林业和草原局生物灾害防控中心
IPC: G06Q10/04 , G06Q50/02 , G06F16/29 , G06F17/15 , G06F18/15 , G06F18/2415 , G06F18/25 , G06N3/0455 , G06N3/08
Abstract: 一种美国白蛾病虫害发生概率预测方法、电子设备及存储介质,属于美国白蛾病虫害预测技术领域。为高效、准确的预测美国白蛾病虫害,本发明采集美国白蛾病虫害的历史发生数据、森林生态环境数据以及气象数据,进行数据清洗和归一化处理;利用皮尔逊相关系数分析预处理后的数据对美国白蛾病虫害的影响力以及数据间的相关性,提取与国白蛾病虫害的影响力相关性最大的相关变量,构建训练数据集和测试数据集;基于Transformer神经网络构建美国白蛾病虫害发生概率预测模型;设置美国白蛾病虫害发生概率预测准确率评价指标;实时获取监测数据,利用美国白蛾病虫害发生概率预测模型进行模拟实验,对美国白蛾病虫害发生概率进行预测。
-
公开(公告)号:CN218411749U
公开(公告)日:2023-01-31
申请号:CN202222466600.X
申请日:2022-09-16
Applicant: 国家林业和草原局生物灾害防控中心
IPC: G01N1/08
Abstract: 本实用新型涉及植物保护和林业疫病防治技术领域,其目的在于提供了一种适用于松材线虫病检测的快速取样装置,有效解决了现有松材线虫病检测存在样品收集困难,效率低下,破坏性大等问题,包括手持杆,所述手持杆顶端通过转轴铰接连接有安装座,安装座内部设置有电机,电机的输出轴与钻头相连接,安装座前端固定安装有限位板,限位板的中间位置上设置有与钻头相匹配的通孔,所述安装座尾端固定安装有真空泵,安装座中部设置有与真空泵输入端相匹配的通风孔,通风孔对应的安装座的侧壁上开设有排放口,其有益效果在于:通过采用钻孔的方式对松树病害区域进行取样,对松树的破坏性小,并且不会影响松树的存活生长,适用于现有松材线虫病的日常监测。
-
公开(公告)号:CN113011355B
公开(公告)日:2022-10-11
申请号:CN202110321019.6
申请日:2021-03-25
Applicant: 东北林业大学
IPC: G06V20/10 , G06V10/30 , G06V10/56 , G06V10/774 , G06V10/147
Abstract: 本发明属于松材线虫病图像识别检测技术领域,具体涉及一种松材线虫病图像识别检测方法及装置,通过设置采用深度学习的目标检测技术对松材线虫病进行检测,能有效提高受病木的识别效率且具有较高的检测精度;采用图像智能识别定位方法采用统一的判别标准,有效提高了识别结果的覆盖率,泛化能力强。综合上述优点,松材线虫病图像识别检测方法能及时发现染病松树并确定其分布情况,有效监测松材线虫病疫情的发展动态,为松林管理人员和森林防护人员提供及时准确的信息。
-
公开(公告)号:CN113011355A
公开(公告)日:2021-06-22
申请号:CN202110321019.6
申请日:2021-03-25
Applicant: 东北林业大学
Abstract: 本发明属于松材线虫病图像识别检测技术领域,具体涉及一种松材线虫病图像识别检测方法及装置,通过设置采用深度学习的目标检测技术对松材线虫病进行检测,能有效提高受病木的识别效率且具有较高的检测精度;采用图像智能识别定位方法采用统一的判别标准,有效提高了识别结果的覆盖率,泛化能力强。综合上述优点,松材线虫病图像识别检测方法能及时发现染病松树并确定其分布情况,有效监测松材线虫病疫情的发展动态,为松林管理人员和森林防护人员提供及时准确的信息。
-
-
-
-