-
公开(公告)号:CN109738811A
公开(公告)日:2019-05-10
申请号:CN201910078743.3
申请日:2019-01-28
Applicant: 东北大学
IPC: G01R31/367 , G01R31/396
Abstract: 本发明提出一种基于双级模型预测的锂离子电池组外部短路故障诊断方法,涉及锂离子动力电池安全技术领域。首先,对锂离子电池组进行外部短路实验,构建电池组外部短路双级等效电路模型,利用被测实验数据对电池模型参数进行离线最优性辨识;然后,运行时根据电池测量数据判断电池组中电池状态,发现部分电池电压出现异常时,对产生异常的相邻电池单元标记为整体,记作异常电池组,启动第一级电池模型,若第一级电池模型误差小于临界阈值,则触发第二级电池模型,计算获得模型误差;最后,通过实测数据与双级模型吻合度,对异常电池进行故障诊断。该方法步骤简单,易于在线实现,且可靠性高,适用于电动汽车动力电池在线故障诊断与安全管理。
-
公开(公告)号:CN109738811B
公开(公告)日:2020-12-01
申请号:CN201910078743.3
申请日:2019-01-28
Applicant: 东北大学
IPC: G01R31/367 , G01R31/396
Abstract: 本发明提出一种基于双级模型预测的锂离子电池组外部短路故障诊断方法,涉及锂离子动力电池安全技术领域。首先,对锂离子电池组进行外部短路实验,构建电池组外部短路双级等效电路模型,利用被测实验数据对电池模型参数进行离线最优性辨识;然后,运行时根据电池测量数据判断电池组中电池状态,发现部分电池电压出现异常时,对产生异常的相邻电池单元标记为整体,记作异常电池组,启动第一级电池模型,若第一级电池模型误差小于临界阈值,则触发第二级电池模型,计算获得模型误差;最后,通过实测数据与双级模型吻合度,对异常电池进行故障诊断。该方法步骤简单,易于在线实现,且可靠性高,适用于电动汽车动力电池在线故障诊断与安全管理。
-