-
公开(公告)号:CN113782718B
公开(公告)日:2023-02-03
申请号:CN202111005565.5
申请日:2021-08-30
Applicant: 上海空间电源研究所 , 上海动力储能电池系统工程技术有限公司
IPC: H01M4/36 , H01M4/48 , H01M4/485 , H01M4/50 , H01M4/505 , H01M4/52 , H01M4/525 , H01M4/58 , H01M10/0525
Abstract: 本发明涉及一种高电压锂离子电池材料、锂离子电池及其制备方法,所述高电压锂离子电池材料包括内核高电压本体材料和外壳掺杂氟化碳层。本发明还提供了该电池材料的制备方法,将碳源溶解于极性有机溶剂中,形成反应溶液;在搅拌过程中加入高电压本体材料,控制反应液温度和时间,离心洗涤得到具有均匀有机框架材料包覆层的中间相Ⅰ;再将中间相Ⅰ在氮气中高温碳化,冷至室温,得到多孔碳层包覆的高电压本体材料;随后置于反应釜中干燥,通入氟气和氮气的混合气体,进行氟化反应,真空干燥后即可。本发明利用氟化碳在充放电过程中发生嵌锂反应,从而生成导电性碳和氟化锂,导电性碳的生成有利于提高材料的导电性,从而提高材料的电化学性能。
-
公开(公告)号:CN113782718A
公开(公告)日:2021-12-10
申请号:CN202111005565.5
申请日:2021-08-30
Applicant: 上海空间电源研究所 , 上海动力储能电池系统工程技术有限公司
IPC: H01M4/36 , H01M4/48 , H01M4/485 , H01M4/50 , H01M4/505 , H01M4/52 , H01M4/525 , H01M4/58 , H01M10/0525
Abstract: 本发明涉及一种高电压锂离子电池材料、锂离子电池及其制备方法,所述高电压锂离子电池材料包括内核高电压本体材料和外壳掺杂氟化碳层。本发明还提供了该电池材料的制备方法,将碳源溶解于极性有机溶剂中,形成反应溶液;在搅拌过程中加入高电压本体材料,控制反应液温度和时间,离心洗涤得到具有均匀有机框架材料包覆层的中间相Ⅰ;再将中间相Ⅰ在氮气中高温碳化,冷至室温,得到多孔碳层包覆的高电压本体材料;随后置于反应釜中干燥,通入氟气和氮气的混合气体,进行氟化反应,真空干燥后即可。本发明利用氟化碳在充放电过程中发生嵌锂反应,从而生成导电性碳和氟化锂,导电性碳的生成有利于提高材料的导电性,从而提高材料的电化学性能。
-
公开(公告)号:CN116315441A
公开(公告)日:2023-06-23
申请号:CN202310186897.0
申请日:2023-03-01
Applicant: 上海空间电源研究所
IPC: H01M50/449 , H01M50/457 , H01M50/414 , H01M10/0525 , H01M50/431 , H01M50/569 , H01M10/42 , H01M50/46 , G01N27/00
Abstract: 本发明公开了一种复合隔膜,包括≥1层多孔聚合物薄膜、0~2层无机多孔绝缘层和导电网络层;无机多孔绝缘层设于最外层多孔聚合物薄膜的外侧;导电网络层设于两层聚合物薄膜之间或设于一层聚合物薄膜与一层无机多孔绝缘层之间,导电网络层的厚度为0.1~10um,导电网络层的孔径为10~300nm;通过监测电池中导电网络层的电信号,实现电池中锂枝晶的检测。本发明还公开了一种电池的锂枝晶检测方法,通过监测复合隔膜中的导电网络层与负极的电压差或导通情况,判断锂枝晶是否到达导电网络层,本发明能够对析锂过程进行准确、高效识别,有效提高电池的使用安全性能。
-
公开(公告)号:CN114167298A
公开(公告)日:2022-03-11
申请号:CN202111265996.5
申请日:2021-10-28
Applicant: 上海空间电源研究所 , 上海动力储能电池系统工程技术有限公司
IPC: G01R31/387
Abstract: 本发明提供了一种基于改进EKF的锂离子电池SOC估算方法及系统,包括如下步骤:估算步骤:建立改进的扩展卡尔曼滤波器,基于改进的扩展卡尔曼滤波器对锂离子电池的SOC进行估算;监测步骤:利用估算的SOC反应锂离子电池的性能及状态,使锂离子电池安全执行任务。本发明利用改进后的扩展卡尔曼滤波器对锂离子电池的SOC进行估算,具有较好的实效性和精确性,解决了常规扩展卡尔曼滤波在长时间搁置工况中误差较大的缺点,具有一定的鲁棒性。
-
公开(公告)号:CN112383127A
公开(公告)日:2021-02-19
申请号:CN202011104277.0
申请日:2020-10-15
Applicant: 上海空间电源研究所 , 上海动力储能电池系统工程技术有限公司 , 中国人民解放军32181部队
Inventor: 曹世宏 , 宁涛 , 胡国昌 , 张宇 , 丁建桥 , 刘辉 , 邵雷军 , 蒋帅 , 徐建明 , 余洋 , 王德佳 , 罗伟林 , 王亮 , 许东 , 闵凡奇 , 刘新伟 , 安石峰 , 朱陶庸 , 张晨 , 黄玉良 , 郭之泓 , 万烨
IPC: H02J7/35 , H02J7/00 , H01M50/244 , H01M50/247 , H01M10/613 , H01M10/623 , H01M10/42 , H01M10/6551 , G05F1/67 , H02S30/20
Abstract: 本发明提供了一种功率可扩展模块化携行储能电源及其控制方法,包括防雨箱体、储能电池模组、可折叠光伏板和控制总成;所述防雨箱体上设置有散热片以及电气接口;所述储能电池模组设置于所述防雨箱体的内部空间的底部;所述可折叠光伏板设置于所述防雨箱体的内部空间的顶部;所述控制总成设置于所述防雨箱体的内部空间的中部,并分别与所述储能电池模组和所述可折叠光伏板电连接。本发明具有便携、抗淋雨、耐低温、模块化可扩展的有益效果。
-
公开(公告)号:CN118681767A
公开(公告)日:2024-09-24
申请号:CN202410709167.9
申请日:2024-06-03
Applicant: 上海空间电源研究所
IPC: B05D3/02 , G01D21/02 , H01M4/139 , H01M4/1395 , H01M10/0525
Abstract: 本发明公开了一种极片烘干系统和烘干方法。极片烘干系统包含多个子烘箱、位置传感器、水分测量装置和控制模块,所述子烘箱、位置传感器及水分测量装置分别与所述控制模块连接,位置传感器和水分测量装置可实时监测极片涂层边缘翘起距离和子烘箱内的湿度,并将该采集信号向控制模块传输,控制模块进行逻辑判断极片的烘干状态和子烘箱的排风频率是否满足生产要求,再向相应的子烘箱发送温度和排风频率调节指令。本发明采用所述极片烘干系统,实现极片烘干过程中自动调节子烘箱的温度和排风频率,调整及时,并省去了大量人力。相比与常规方法,本发明制备的极片良品率提升了6%~7%,电池循环寿命提升了约2%,且有利于电池结构稳定性的优化和生产效率的提高。
-
公开(公告)号:CN116364945A
公开(公告)日:2023-06-30
申请号:CN202310317124.1
申请日:2023-03-27
Applicant: 上海空间电源研究所
IPC: H01M4/74 , H01M4/70 , H01M4/66 , H01M4/78 , H01M4/13 , H01M4/139 , H01M4/04 , H01M10/0525 , H01M10/42 , B23K26/21 , B23K26/70 , B22F10/28 , B33Y10/00 , B23K101/36
Abstract: 本发明公开了一种锂离子电池集流体,包括网格框架和金属薄膜;网格框架采用正温度系数材料;若干个金属薄膜设于网格框架的若干个网格孔洞中,相邻网格孔洞中的金属薄膜相互独立;网格框架的厚度不小于金属薄膜。本发明还公开了一种包含上述集流体的锂离子电池电极及锂离子电池,本发明集流体能够大幅提高电池的安全性能,同时存在结构简单,成本低廉的优势,有利于实现大规模生产。
-
公开(公告)号:CN119601752A
公开(公告)日:2025-03-11
申请号:CN202411831252.9
申请日:2024-12-12
IPC: H01M10/0525 , H01M10/0587 , H01M10/0567 , H01M4/36 , H01M4/485 , H01M4/587
Abstract: 本发明公开了一种圆柱型锂电池及其制备方法,所述圆柱型锂电池包括电池壳体、电池盖帽、电芯、电解液,电芯由正极、负极、隔膜组成,所述正极的活性材料为包覆型高镍过渡金属氧化物材料;所述负极的活性材料为石墨,负极含有第一涂层和第二涂层,在电池充电至第一电压U1和第二电压U2之间,在负极第二涂层内部和表面形成第三涂层—金属锂层;所述第一涂层为石墨材料,第二涂层为多孔导电材料;所述第一电压U1为3.85V~4.00V,第二电压U2为4.1V~4.3V。本发明的锂电池具备锂原电池低自放电率及锂离子电池高功率放电的双重优势,该制备方法操作简单,不增加额外处理工序,对电池成本几乎无影响。
-
公开(公告)号:CN116130595A
公开(公告)日:2023-05-16
申请号:CN202310190115.0
申请日:2023-03-01
Applicant: 上海空间电源研究所
IPC: H01M4/13 , H01M4/04 , H01M10/052
Abstract: 本发明公开了一种锂电池电极片,包括集流体、电极材料涂层和热熔薄膜;电极材料涂层涂覆于集流体两侧,热熔薄膜覆于电极材料涂层外侧;热熔薄膜所用材质的熔点为60~160℃;将锂电池电极片作为锂电池的正极片或负极片,热熔薄膜未发生熔化时可以阻挡锂离子在正极片和负极片之间的传输,当热熔薄膜发生熔化收缩后锂离子可在正极片和负极片之间进行传输。本发明还公开了一种激活式锂电池,常温贮存时,正极片和负极片间的锂离子传输通道被阻断,显著降低电池自放电;对激活式锂电池进行加热时,热熔薄膜受热熔化收缩,正极片和负极片间的锂离子传输通道打开,激活式锂电池被激活,本发明具有激活时间短、贮备寿命长、比能量高、放电倍率大的优势。
-
公开(公告)号:CN113725971A
公开(公告)日:2021-11-30
申请号:CN202111007579.0
申请日:2021-08-30
Applicant: 上海空间电源研究所 , 上海动力储能电池系统工程技术有限公司
Inventor: 余洋 , 黄军 , 许东 , 郭文涛 , 闵凡奇 , 刘新伟 , 安石峰 , 王亮 , 黄家俊 , 熊文波 , 韩修远 , 黄嘉烨 , 王德佳 , 罗伟林 , 黄玉良 , 郭之泓 , 万烨 , 袁百玲 , 邵雷军 , 刘辉
IPC: H02J7/00 , H01M10/44 , H01M10/613
Abstract: 本发明提供了一种高压储能短时功率输出系统及其控制方法,包括储能电池系统、高压控制系统和集成控制系统;所述高压控制系统包括高压充电机、BMS主控单元;高压充电机的水冷回路与储能电池系统相连,通过高压充电机直接对储能电池系统进行充电;BMS主控单元从集成控制系统取电,通过CAN通讯对储能电池系统进行供电及管理。本发明通过采用高功率电池体系,经过散热设计、绝缘设计、力学设计,实现了可靠性高功率特性输出;将储能电池系统、高压控制系统、集成控制系统经模块化设计、集成化组装,实现了模块化可扩展集成设计。
-
-
-
-
-
-
-
-
-