一种超级电容器用黑色Ti-P-O纳米管阵列电极材料的制备方法

    公开(公告)号:CN114843119B

    公开(公告)日:2023-11-07

    申请号:CN202210469761.6

    申请日:2022-04-30

    Abstract: 本发明涉及一种超级电容器用黑色Ti‑P‑O纳米管阵列电极材料的制备方法,具体包括以下步骤:将打磨好的钛片放入含氟化铵的乙二醇水溶液中进行阳极氧化,使其表面原位生长具有高比表面积的TiO2纳米管阵列。将制备的钛基纳米管阵列和次亚磷酸钠放入管式炉中,在真空低氧条件下共同热处理得到黑色Ti‑P‑O纳米管阵列。本发明通过一步气相磷化处理的方式,在钛氧化物纳米管中进行P5+掺杂的同时在其表面自掺杂Ti3+/氧空位。体相P5+掺杂协同表面Ti3+/氧空位自掺杂可大大提升导电性并促进电荷传输效率,表现出优秀的面电容特性。此外,该黑色Ti‑P‑O纳米管阵列电极材料在制备过程中具有操作简单、成本低廉等优点,在电化学储能领域表现出良好的应用前景。

    一种超级电容器用黑色Ti-P-O纳米管阵列电极材料的制备方法

    公开(公告)号:CN114843119A

    公开(公告)日:2022-08-02

    申请号:CN202210469761.6

    申请日:2022-04-30

    Abstract: 本发明涉及一种超级电容器用黑色Ti‑P‑O纳米管阵列电极材料的制备方法,具体包括以下步骤:将打磨好的钛片放入含氟化铵的乙二醇水溶液中进行阳极氧化,使其表面原位生长具有高比表面积的TiO2纳米管阵列。将制备的钛基纳米管阵列和次亚磷酸钠放入管式炉中,在真空低氧条件下共同热处理得到黑色Ti‑P‑O纳米管阵列。本发明通过一步气相磷化处理的方式,在钛氧化物纳米管中进行P5+掺杂的同时在其表面自掺杂Ti3+/氧空位。体相P5+掺杂协同表面Ti3+/氧空位自掺杂可大大提升导电性并促进电荷传输效率,表现出优秀的面电容特性。此外,该黑色Ti‑P‑O纳米管阵列电极材料在制备过程中具有操作简单、成本低廉等优点,在电化学储能领域表现出良好的应用前景。

    一种磷掺杂镍钴硫复合电极材料及其制备方法和应用

    公开(公告)号:CN114664573B

    公开(公告)日:2024-05-31

    申请号:CN202210324365.4

    申请日:2022-03-29

    Abstract: 本发明涉及一种储能材料,具体涉及一种磷掺杂镍钴硫复合电极材料及其制备方法和应用,包括如下步骤:S1:将镍源、钴源和硫源加入混合溶液中,得到前驱体溶液;S2:将预处理好的泡沫镍浸入到前驱体溶液进行水热反应,冷却到自然室温、进行洗涤和干燥后得到NiCo2S4@NF复合电极材料;S3:通过磷源将NiCo2S4@NF复合电极材料进行磷化,冷却到自然室温,进行洗涤和干燥后得到磷掺杂镍钴硫复合电极材料。与现有技术相比,本发明利用磷元素掺杂改善了材料的电化学性能,以泡沫镍作为基底可以增加材料的比表面积,这种合成方法制得的电极材料性能优异、方法简单,可以实现大规模工业化应用。

    一种基于结效应的BiVO4三元复合光阳极的制备方法及应用

    公开(公告)号:CN117966195A

    公开(公告)日:2024-05-03

    申请号:CN202311847029.9

    申请日:2023-12-29

    Abstract: 本发明涉及光电催化领域,具体涉及一种基于结效应的BiVO4三元复合光阳极的制备方法及应用,包括以下步骤:S1:先将FTO导电玻璃清洗、吹干备用;采用电沉积法在FTO上负载BiOI薄膜;S2:BiOI薄膜上加入V源,再转移至管式炉中在空气气氛中退火生成BiVO4薄膜,同时进行晶化处理;S3:通过化学浴沉积法将Co(OH)2负载到BiVO4薄膜上,并在空气气氛中退火得到BiVO4/Co3O4电极材料;S4:同样采用化学浴沉积法,在S3得到的电极材料上负载NiOOH/FeOOH,最后经过洗涤、干燥即可得到BiVO4/Co3O4/NiFe‑LDH三元复合光阳极材料。本发明通过p‑n结和OEC的协同作用,可有效抑制光生载流子的复合,促进电极表面水氧化反应的进行,相比本征BiVO4光阳极材料,三元复合光阳极材料的光电流密度提升了4.6倍。

    一种具有阶梯型能带结构钛基三元复合光阳极的制备方法

    公开(公告)号:CN117626342A

    公开(公告)日:2024-03-01

    申请号:CN202311578896.7

    申请日:2023-11-24

    Abstract: 本发明涉及一种具有阶梯型能带结构三元钛基复合光阳极的制备方法,具体包括以下步骤:S1、将处理好的钛片进行阳极氧化与高温晶化,使其表面生长TiO2纳米管阵列,记为TNAs。S2、通过热处理将三聚氰胺转化为块状g‑C3N4,随后通过研磨、超声转化为纳米颗粒在去离子水中的悬浊液,将TNAs放入悬浊液中,以物理沉积与真空干燥在得到g‑C3N4。S3、以柠檬酸、乙二胺为原料,通过水热得到氮掺杂碳量子点,记为NCQDs。通过与S2中同样的物理沉积,得到TNAs/g‑C3N4/NCQDs三元复合体系。本发明通过物理沉积在TNAs表面复合g‑C3N4与NCQDs,经过相关表征与性能测试,所制备三元复合体系光吸收增强,符合阶梯型Ⅱ型能带结构,优化了光生电子空穴的转移与传输,较本征TiO2性能提升7.3倍。

    一种磷掺杂镍钴硫复合电极材料及其制备方法和应用

    公开(公告)号:CN114664573A

    公开(公告)日:2022-06-24

    申请号:CN202210324365.4

    申请日:2022-03-29

    Abstract: 本发明涉及一种储能材料,具体涉及一种磷掺杂镍钴硫复合电极材料及其制备方法和应用,包括如下步骤:S1:将镍源、钴源和硫源加入混合溶液中,得到前驱体溶液;S2:将预处理好的泡沫镍浸入到前驱体溶液进行水热反应,冷却到自然室温、进行洗涤和干燥后得到NiCo2S4@NF复合电极材料;S3:通过磷源将NiCo2S4@NF复合电极材料进行磷化,冷却到自然室温,进行洗涤和干燥后得到磷掺杂镍钴硫复合电极材料。与现有技术相比,本发明利用磷元素掺杂改善了材料的电化学性能,以泡沫镍作为基底可以增加材料的比表面积,这种合成方法制得的电极材料性能优异、方法简单,可以实现大规模工业化应用。

Patent Agency Ranking