-
公开(公告)号:CN112662039B
公开(公告)日:2023-04-28
申请号:CN202011435238.9
申请日:2020-12-10
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种力学性能优良的阻燃EVA,包括以下重量份组分的原料:EVA 50‑60份;氢氧化铝25‑35份;氢氧化镁15‑25份;碳酸钙0.5‑15份;硬脂酸1‑5份。本发明以氢氧化铝,氢氧化镁或者碳酸钙一种或多种作为阻燃体系,硬脂酸为改性剂,EVA作为复合材料主体,制得所述的一种力学性能优良阻的EVA及其制备方法。
-
公开(公告)号:CN111420679B
公开(公告)日:2022-12-16
申请号:CN202010151939.3
申请日:2020-03-06
Applicant: 上海应用技术大学
IPC: B01J27/043 , B01J35/10 , C25B1/04 , C25B11/093
Abstract: 本发明涉及一种Co@NiSx‑CNT电极材料及其制备方法与应用,制备方法为:将钴源、镍源、硫源及N,N‑二甲基甲酰胺混合均匀得到混合液,之后加入碳纳米管,混合均匀后得到反应液;将反应液进行高温水热反应,经后处理即得到Co@NiSx‑CNT电极材料,该电极材料应用在电催化析氢反应中。与现有技术相比,本发明Co@NiSx‑CNT电极材料的合成过程简便且安全,通过将材料负载在碳纳米管上增加了材料的比表面积,解决了硫化物表面暴露的活性位点不足的问题,提高了材料的电化学性能。
-
公开(公告)号:CN113957468A
公开(公告)日:2022-01-21
申请号:CN202110858379.X
申请日:2021-07-28
Applicant: 上海应用技术大学
IPC: C25B11/031 , C25B11/052 , C25B11/061 , C25B11/091 , C25B1/04 , C01G53/11 , C01G51/04
Abstract: 本发明涉及一种Ni3S2@CoO‑NF复合材料及其合成方法与应用,所述方法包括以下步骤:(a)取钴盐、尿素、氨盐分散于水中得到溶液A,将处理过的泡沫镍浸泡于溶液A中,进行水热、干燥和煅烧得到CoO‑NF复合材料;(b)取六水合硝酸镍、硫源分散于水中得到溶液B,再将步骤(a)中得到的CoO‑NF复合材料置于溶液B中进行水热反应,经干燥得到目的产物。该复合材料可用于电催化析氢反应的工作电极,Ni3S2的负载提高了材料与水的接触面积,并且Ni3S2@CoO组成了异质结构,该结构对碱性溶液中的氢中间体表现出优异的吸附能力,提高了材料的析氢性能及稳定性。此外,本发明中的析氢材料具有较低的Tafel斜率和过电位,析氢所需突破的能量壁垒较低,氢气转换率较高,速率较快。
-
公开(公告)号:CN111415823B
公开(公告)日:2021-12-07
申请号:CN202010151958.6
申请日:2020-03-06
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种Ni‑Sn‑S复合材料及其制备方法与应用,复合材料的制备方法包括以下步骤:1)将Na2SnO3溶液和Ni(CH3COO)2溶液混合均匀,之后加入硫代乙酰胺并进行水热反应;2)水热反应结束后,经后处理,即得到Ni‑Sn‑S复合材料;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明通一步水热法合成了Ni‑Sn‑S复合材料,该复合材料具有良好的电化学性能,且该制备方法简单,环境友好,便于大规模生产。
-
公开(公告)号:CN113643903A
公开(公告)日:2021-11-12
申请号:CN202110796686.X
申请日:2021-07-14
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种NF@Ni‑Mo‑S@NiCo‑LDH复合材料及其制备方法与应用。制备方法包括以下步骤:将四水合钼酸铵、Ni(NO3)2·6H2O、硫脲与水混合,搅拌并辅以超声分散均匀使其完全溶解,得到混合溶液A;以混合溶液A作为电沉积液,以丙酮、乙醇、水依次处理过的泡沫镍作为沉积载体,采用一步电沉积法,洗涤,干燥后制得NF@Ni‑Mo‑S;将Ni(NO3)2·6H2O、Co(NO3)3·6H2O加入水中,充分搅拌分散均匀得到混合溶液B;以混合溶液B作为电沉积液,以NF@Ni‑Mo‑S作为沉积载体,采用一步电沉积法,洗涤,干燥制得NF@Ni‑Mo‑S@NiCo‑LDH复合材料。与现有技术相比,本发明制备的NF@Ni‑Mo‑S@NiCo‑LDH复合材料,具有多层片状纳米结构,可以提供大量有效的活性位点,因此拥有优异的电化学性能;另外制备方法为两步电沉积,简单易操作,环境友好,便于大规模工业生产。
-
公开(公告)号:CN113481585A
公开(公告)日:2021-10-08
申请号:CN202110784151.0
申请日:2021-07-12
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种不锈钢电解抛光液及电解抛光方法,包括以下重量份的各组分:硫酸20‑50份,磷酸50‑80份,光亮剂2‑6份,辅助光亮剂3‑7份,导电剂2‑3份;不锈钢电解抛光方法包括:不锈钢预处理,放入不锈钢电解抛光液中进行电解抛光,其中预处理后的不锈钢为阳极,铜板或铅版为阴极,同时开启磁力搅拌装置实现电解液的分散,电解抛光时间为1‑5分钟,清洗和烘干。与现有技术相比,本发明中技术方案成本可控,电解抛光时间短,能在中低温条件下进行,相较于传统电解抛光液,效率极大地提高,生产难度降低,广泛应用于不锈钢电解抛光领域。
-
公开(公告)号:CN111705332B
公开(公告)日:2021-07-20
申请号:CN202010430892.4
申请日:2020-05-20
Applicant: 上海应用技术大学
IPC: C25B11/054 , C25B11/089 , C25B11/031 , C25B1/02 , C25D3/56 , B01J23/83 , B01J37/34
Abstract: 本发明涉及一种简单电沉积Co‑Ce/NF电极材料及其制备和应用,该制备方法包括以下步骤:(1)取钴源、铈源和氯化铵溶于去离子水,混合至溶液澄清,得到电沉积溶液;(2)在装有步骤(1)中的电沉积溶液的电沉积装置中,将泡沫镍作为工作电极连接,氯化银电极作参比电极,铂丝电极为对电极,经一步电沉积法后得到Co‑Ce/NF材料;(3)所得Co‑Ce/NF材料洗涤、烘干后,即得到目的产物Co‑Ce/NF电极材料。与现有技术相比,本发明合成的Co‑Ce/NF电极材料通过将稀土元素铈和钴形成合金产生协同作用,用稀土元素的活泼性改善了钴合金的电化学性能,且以泡沫镍作为载体增加了材料表面积,此外合成方法简便、能耗低,电化学性能优秀,有望应用于工业大规模生产。
-
公开(公告)号:CN113130214A
公开(公告)日:2021-07-16
申请号:CN202110287526.2
申请日:2021-03-17
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种NF@MoO3@NiCo‑LDH复合材料及其制备方法和应用,包括:制备钼酸铵溶液;以钼酸铵溶液作为电沉积液,以泡沫镍作为载体,采用一步电沉积法制得NF@MoO3前驱体,之后将NF@MoO3前驱体在空气氛围中进行退火工艺,得到NF@MoO3;将Ni(NO3)2·6H2O、Co(NO3)3·6H2O、NH4F、尿素加入水中,充分搅拌分散均匀,将溶液转入高压釜中,浸入NF@MoO3,水热反应,冷却,洗涤,干燥,得到NF@MoO3@NiCo‑LDH材料。与现有技术相比,本发明制备的材料具有独特的分层核壳结构,可以提供有效的活性位点,不仅具有MoO3促进电解质的扩散和电子的转移的优点同时具有NiCo‑LDH高比电容的优点,电化学性能良好;制备方法环境友好、制备方法简单易操作,便于大规模工业生产。
-
公开(公告)号:CN113058436A
公开(公告)日:2021-07-02
申请号:CN202110274617.2
申请日:2021-03-15
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种石墨烯基Ag@ZIF‑67复合材料膜及其制备方法和应用,该方法包括以下步骤:(1)将MOF材料加入到溶剂中,均匀搅拌后,加入银源并搅拌得到溶液A;(2)将还原剂加入到溶液A中并均匀搅拌得到溶液B;(3)将溶液B固液分离并洗涤干燥得到Ag@ZIF‑67;(4)将Ag@ZIF‑67加入到氧化石墨烯溶液中均匀搅拌,真空抽滤后,得到石墨烯基Ag@ZIF‑67复合材料膜,该复合材料膜应用于废水处理。与现有技术相比,本发明具有方法简单,成本低廉,反应条件温和,且操作简单、原料绿色、来源广泛,应用广泛,机械结构强,且可以重复利用等优点。
-
公开(公告)号:CN112646259A
公开(公告)日:2021-04-13
申请号:CN202011431360.9
申请日:2020-12-10
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种高阻燃性复合高分子材料,包括以下重量份组分的原料:乙烯‑乙酸乙烯共聚物50‑150份,低密度聚乙烯20‑70份,改性剂1‑10份,阻燃剂30‑100份。改性剂为硬脂酸,阻燃剂纳米级氢氧化镁和纳米级氢氧化铝,乙烯‑醋酸乙烯共聚物是一种很好的极性基团它具有很多优良的特性,比如具有耐应力开裂性。而且具有良好的韧性以及耐冲击性等特性。正是因为它的一系列优良的特性,使得在实验中可以有利于LDPE和一些无机化合物更好的界面结合,通过这种结合可以有效的改善阻燃材料的力学性能,使得LDPE这种非极性材料的利用率大大提升。
-
-
-
-
-
-
-
-
-