-
公开(公告)号:CN111783682A
公开(公告)日:2020-10-16
申请号:CN202010634485.5
申请日:2020-07-02
Applicant: 上海交通大学医学院附属第九人民医院
Abstract: 本申请提供的一种眼眶骨折自动识别模型构建方法、装置、设备和介质。通过获取包含眼眶骨折和正常眼眶的CT图像的数据集;对数据集进行数据归一化处理和数据增强处理;将处理后的数据集输入基于深度卷积神经网络模型进行训练,并根据输出正样本和负样本的预测概率以确定识别结果和/或根据输出的梯度权重热力图以提示骨折区域。本申请采用三维区域标注可缩减了标注时间;并通过对CT图像进行预处理,可以去除骨性眼眶周围干扰信号,增加骨性眼眶信号在整体图片中的比例,且缩小图片大小,节约存储空间,减少训练时间;所构建的模型能够实现对眼眶CT图像中眼眶爆裂性骨折的自动识别和定位,可为医生阅片提供参考,减轻工作负担,降低漏诊概率。
-
公开(公告)号:CN111783682B
公开(公告)日:2022-11-04
申请号:CN202010634485.5
申请日:2020-07-02
Applicant: 上海交通大学医学院附属第九人民医院
Abstract: 本申请提供的一种眼眶骨折自动识别模型构建方法、装置、设备和介质。通过获取包含眼眶骨折和正常眼眶的CT图像的数据集;对数据集进行数据归一化处理和数据增强处理;将处理后的数据集输入基于深度卷积神经网络模型进行训练,并根据输出正样本和负样本的预测概率以确定识别结果和/或根据输出的梯度权重热力图以提示骨折区域。本申请采用三维区域标注可缩减了标注时间;并通过对CT图像进行预处理,可以去除骨性眼眶周围干扰信号,增加骨性眼眶信号在整体图片中的比例,且缩小图片大小,节约存储空间,减少训练时间;所构建的模型能够实现对眼眶CT图像中眼眶爆裂性骨折的自动识别和定位,可为医生阅片提供参考,减轻工作负担,降低漏诊概率。
-