-
公开(公告)号:CN106077656A
公开(公告)日:2016-11-09
申请号:CN201610619703.1
申请日:2016-07-30
Applicant: 上海交通大学
CPC classification number: B22F3/001 , B22F3/105 , B22F3/14 , B22F3/20 , B22F2003/1051 , B22F2003/145 , B22F2003/208 , B22F2998/10 , B22F2999/00 , B22F2201/11
Abstract: 本发明提供了一种制备具有纳米或超细显微组织结构钛制品的新型粉末冶金方法,包括如下步骤:步骤一,将氢化钛粉末的晶粒尺寸细化至纳米晶级;步骤二,将纳米晶级的氢化钛粉末热固结形成压坯;步骤三,在惰性气体保护下,对压坯进行加热;步骤四,将加热后的压坯移入挤压装置中,在一定的压强及挤压比下进行挤压使压坯通过具有一定内腔形状的挤压模具,固结成具有纳米或超细显微组织结构的钛制品;步骤五,挤压完成后,将挤出的钛制品冷却至室温,随后取出;步骤六,将钛制品在真空环境中加热。步骤三中使用的加热装置和步骤四中使用的挤压装置安装于同一密封体系中,在整个加热和挤压过程中,向密封体系中持续通入惰性气体。
-
公开(公告)号:CN105081314B
公开(公告)日:2017-05-24
申请号:CN201510623187.5
申请日:2015-09-25
Applicant: 上海交通大学
Abstract: 本发明公开了一种利用氢化钛粉末制备钛制品的方法,包括如下步骤:(1)制坯:将氢化钛粉末通过模压制成坯材;(2)脱氢:在保护气氛下对坯材进行加热,升温速率维持在50‑200℃/分钟,直至坯材温度升至900‑1200℃,保温5‑20分钟;(3)成形:将加热后的坯材移入挤压装置中,在一定的压强及挤压比下进行挤压,使坯材通过具有特定内腔形状的挤压模具而成形固结得到钛制品;(4)冷却:挤压完成后,将钛制品在10‑100℃/分钟的速度下冷却至室温,随后取出。本发明公开的方法具有如下优点:原料成本低,脱氢速度快,生产效率高,产品纯度高,工艺流程简单,具有规模化生产的潜力。
-
公开(公告)号:CN105734316A
公开(公告)日:2016-07-06
申请号:CN201610128648.6
申请日:2016-03-07
Applicant: 上海交通大学
CPC classification number: C22C1/0458 , C22C14/00 , C22C32/0052 , C22C32/0073
Abstract: 本发明公开了一种利用氢化钛粉末直接制备成型钛基复合材料的方法,包括如下步骤:制坯:将氢化钛粉末与添加物进行混合并通过模压制成粉末压坯;脱氢:对粉末压坯进行加热,升温速率维持在50?200℃/分钟,直至粉末压坯温度升至900?1500℃,并在选定的温度下保温5分钟至30分钟;成型:将加热后的粉末压坯移入挤压装置中,在一定的压强及挤压比下进行挤压使粉末压坯通过挤压模具,成型固结成钛基复合材料;冷却:挤压完成后,将钛基复合材料在10?100℃/分钟的速度下冷却至室温,随后取出。本发明减少了原料成本,缩短了工艺流程,减少了后续加工过程中杂质的引入。本发明具有脱氢速度快,产品致密度高和力学性能好的特点。
-
公开(公告)号:CN106077656B
公开(公告)日:2018-05-25
申请号:CN201610619703.1
申请日:2016-07-30
Applicant: 上海交通大学
Abstract: 本发明提供了一种制备具有纳米或超细显微组织结构钛制品的新型粉末冶金方法,包括如下步骤:步骤一,将氢化钛粉末的晶粒尺寸细化至纳米晶级;步骤二,将纳米晶级的氢化钛粉末热固结形成压坯;步骤三,在惰性气体保护下,对压坯进行加热;步骤四,将加热后的压坯移入挤压装置中,在一定的压强及挤压比下进行挤压使压坯通过具有一定内腔形状的挤压模具,固结成具有纳米或超细显微组织结构的钛制品;步骤五,挤压完成后,将挤出的钛制品冷却至室温,随后取出;步骤六,将钛制品在真空环境中加热。步骤三中使用的加热装置和步骤四中使用的挤压装置安装于同一密封体系中,在整个加热和挤压过程中,向密封体系中持续通入惰性气体。
-
公开(公告)号:CN107755686A
公开(公告)日:2018-03-06
申请号:CN201710949200.5
申请日:2017-10-12
Applicant: 上海交通大学
CPC classification number: B22F1/0018 , B22F3/20 , B22F2003/208 , B22F2998/10 , B22F2999/00 , B82Y30/00 , B82Y40/00 , H01H1/023 , H01H1/027 , B22F2009/043 , B22F1/0088 , B22F3/02 , B22F2201/11 , B22F2201/02
Abstract: 本发明提供了一种纳米银碳复合材料以及一种结合高能球磨,冷压和热挤压的粉末冶金制备纳米银碳复合材料的方法。本发明采用了以下技术方案,包括步骤1)制备银粉和石墨粉;2)高能球磨;3)钝化处理;4)冷压处理;5)热挤压处理。本发明提供的工艺简单,采用常见的粉末冶金技术,将高能球磨引入制备过程中,利用冷压和热挤压工艺,精简工艺流程,缩短制备时间,降低材料成本。本发明制备的纳米银碳复合材料的微观结构为纳米尺寸的碳颗粒均匀分布在银基体内部;扫描电镜和透射电镜结果显示:纳米碳颗粒尺寸在3~300纳米之间;复合材料致密度为99.5~100%之间,硬度为55~68Hv之间,电阻率为1.7~2.5uΩ.cm之间。
-
公开(公告)号:CN105734316B
公开(公告)日:2018-03-06
申请号:CN201610128648.6
申请日:2016-03-07
Applicant: 上海交通大学
Abstract: 本发明公开了一种利用氢化钛粉末直接制备成型钛基复合材料的方法,包括如下步骤:制坯:将氢化钛粉末与添加物进行混合并通过模压制成粉末压坯;脱氢:对粉末压坯进行加热,升温速率维持在50‑200℃/分钟,直至粉末压坯温度升至900‑1500℃,并在选定的温度下保温5分钟至30分钟;成型:将加热后的粉末压坯移入挤压装置中,在一定的压强及挤压比下进行挤压使粉末压坯通过挤压模具,成型固结成钛基复合材料;冷却:挤压完成后,将钛基复合材料在10‑100℃/分钟的速度下冷却至室温,随后取出。本发明减少了原料成本,缩短了工艺流程,减少了后续加工过程中杂质的引入。本发明具有脱氢速度快,产品致密度高和力学性能好的特点。
-
公开(公告)号:CN105081314A
公开(公告)日:2015-11-25
申请号:CN201510623187.5
申请日:2015-09-25
Applicant: 上海交通大学
Abstract: 本发明公开了一种利用氢化钛粉末制备钛制品的方法,包括如下步骤:(1)制坯:将氢化钛粉末通过模压制成坯材;(2)脱氢:在保护气氛下对坯材进行加热,升温速率维持在50-200℃/分钟,直至坯材温度升至900-1200℃,保温5-20分钟;(3)成形:将加热后的坯材移入挤压装置中,在一定的压强及挤压比下进行挤压,使坯材通过具有特定内腔形状的挤压模具而成形固结得到钛制品;(4)冷却:挤压完成后,将钛制品在10-100℃/分钟的速度下冷却至室温,随后取出。本发明公开的方法具有如下优点:原料成本低,脱氢速度快,生产效率高,产品纯度高,工艺流程简单,具有规模化生产的潜力。
-
-
-
-
-
-