-
公开(公告)号:CN118864453A
公开(公告)日:2024-10-29
申请号:CN202411336457.X
申请日:2024-09-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 青岛海尔智能技术研发有限公司 , 山东山科数字经济研究院有限公司
IPC: G06T7/00 , G06N3/0464 , G06V10/80 , G06V10/82
Abstract: 本发明提供了基于局部整体上下文感知的钢铁表面瑕疵检测方法及系统,涉及图像处理技术领域,所述方法包括:获取待检测钢铁图像;将钢铁图像输入钢铁表面瑕疵检测模型中进行检测,获得钢铁表面瑕疵检测结果;局部整体感知网络利用不同空洞率的空洞卷积提取不同尺度的局部特征,并在获取全局特征时,将查询向量、键向量和值向量均输入到卷积模块、深度卷积模块和逐点卷积模块中处理;多层级交互网络利用局部整体感知网络不同层的输出,进行跨层特征融合;强化识别网络,融合多层级交互网络的输出特征,对融合后的特征进行增强与检测,得到钢铁表面瑕疵检测结果。本发明能够提高钢铁瑕疵检测的准确率和效率。
-
公开(公告)号:CN118644359A
公开(公告)日:2024-09-13
申请号:CN202411124271.8
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及能源供应技术领域,具体为应用于工业园区的氢能负荷预测方法及系统,通过获取工业园区历史能源负荷数据、工业园区所在地气象站的历史气象数据以及时间数据,并进行预处理,经编码操作得到特征表示;预处理后的数据基于全局时域特征捕获网络得到频域表示,进一步得到全局周期性特征;根据得到的特征表示,利用多尺度特征融合网络提取出局部非线性特征;得到的全局周期性特征和局部非线性特征,利用自适应门控融合网络得到预测结果。利用深度神经网络的强大拟合能力和频域分析的周期性识别优势,结合多尺度特征提取技术,能够更全面、更精细地解析氢能源需求的内在规律,显著提高预测的准确性和稳定性。
-
公开(公告)号:CN118570212A
公开(公告)日:2024-08-30
申请号:CN202411059782.6
申请日:2024-08-05
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06T7/00 , G06V10/80 , G06V10/44 , G06V10/42 , G06V10/52 , G06V10/82 , G06V20/70 , G06V10/25 , G06N3/0464 , G06N3/045 , G06N3/084 , G06N3/048
Abstract: 本发明公开了一种基于强化特征提取网络的显示屏缺陷检测方法及系统,属于工业表面缺陷检测技术领域,包括将获取的液晶显示屏图像输入至训练好的表面缺陷检测模型,表面缺陷检测模型中液晶显示屏图像首先经过深层强化特征提取网络提取液晶显示屏图像的不同尺度特征,并将不同尺度的强化特征输入至跨层交互连接网络有效结合浅层特征和深层特征,输出不同尺度的交互特征,将不同尺度的交互特征输入至语义感知识别网络捕捉远距离特征,增强对缺陷特征的多尺度表示,最终输出缺陷检测结果。通过设计深层强化特征提取网络、跨层交互连接网络和语义感知识别网络构建液晶显示屏表面缺陷检测模型,实现多类别缺陷检测的精准识别和定位。
-
公开(公告)号:CN117934980A
公开(公告)日:2024-04-26
申请号:CN202410338088.1
申请日:2024-03-25
Applicant: 山东山科数字经济研究院有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/80 , G06T7/00 , G06N3/0464 , G06N3/048 , G06N3/09
Abstract: 本发明涉及工业检测技术领域,公开一种基于注意力监督调整的玻璃容器缺陷检测方法及系统,所述方法包括以下步骤:(1)获取玻璃容器瓶身、瓶颈、瓶口和瓶底的图像,得到玻璃容器图像数据集B;(2)对玻璃容器图像数据集B进行标注,得到图像数据集中缺陷的真实方框,并划分成训练集、验证集和测试集;(3)搭建玻璃容器缺陷检测模型;(4)将玻璃容器图像输入到训练好的玻璃容器缺陷检测模型中,输出缺陷检测结果。所述系统包括玻璃容器图像采集模块和玻璃容器缺陷检测模块。本发明提高了玻璃容器缺陷检测的准确率,且具有较高的鲁棒性。
-
公开(公告)号:CN117669593B
公开(公告)日:2024-04-26
申请号:CN202410128850.3
申请日:2024-01-31
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F40/30 , G06F40/295
Abstract: 本发明公开的基于等价语义的零样本关系抽取方法、系统、设备及介质,涉及零样本关系抽取技术领域,包括:获取待识别样本;提取待识别样本中句子实例的语义特征向量及关系描述的语义特征向量;对句子实例的语义特征向量和关系描述的语义特征向量,均进行正交变换,对应获得句子语义等价向量和关系语义等价向量;计算句子实例的语义特征向量和关系描述的语义特征向量的匹配分数,及句子语义等价向量和关系语义等价向量的匹配分数;将两种匹配分数加权求和,获得句子实例和关系描述的预测分数;根据句子实例和关系描述的预测分数,确定句子实例和关系描述的预测关系。提高了零样本关系抽取的准确性。
-
公开(公告)号:CN117764988A
公开(公告)日:2024-03-26
申请号:CN202410194597.1
申请日:2024-02-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东山科数字经济研究院有限公司
Abstract: 本发明涉及计算机视觉的应用领域,提供了一种基于异核卷积多感受野网络的道路裂缝检测方法及系统。该方法包括,获取待检测的道路图像;基于待检测的道路图像,采用异核卷积多感受野网络,对道路裂缝进行检测;其中异核卷积多感受野网络包括:异核特征提取网络、加权异核特征融合网络和检测头网络,异核特征提取网络采用多个双分支异核多感受野模块与横纵局部全局特征增强模块级联的方式,提取得到特征图;双分支异核多感受野模块,将输入图像进行分割后,分别输入两路分支依次进行卷积处理和分支特征图融合;加权异核特征融合网络,包括多个双分支异核多感受野模块和多个加权特征拼接模块;检测头网络,根据融合特征图,检测道路缝隙。
-
公开(公告)号:CN116935221B
公开(公告)日:2024-02-13
申请号:CN202310901025.8
申请日:2023-07-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V20/10 , G06V20/70 , G06V10/25 , G06V10/77 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08 , G06Q50/02 , G16Y10/05
Abstract: 一种基于物联网的植保无人机杂草深度学习检测方法,涉及图像识别技术领域,植保无人机对农田进行数据采集,进行挑选制作农作物与杂草数据集,利用农作物与杂草数据集进行分析标注并转换标注格式,图像预处理,特征提取网络模型搭建,特征融合网络模型搭建,图像训练及测试验证,对训练结果进行封装,构建物联网系统。解决了杂草识别准确率低的问题,具有鲁棒性高,泛化能力强,准确度高的特点。(56)对比文件Zhiren Zhu.et al.Improved YOLOv5l-based Detection of Surface Defects in HotRolled Steel Strips《.Frontiers inComputing and Intelligent Systems》.2023,第4卷(第1期),全文.
-
公开(公告)号:CN117036937B
公开(公告)日:2024-01-26
申请号:CN202310901011.6
申请日:2023-07-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06V10/25 , G06N3/045 , G06N3/0464 , G06N3/08 , G06T7/00
Abstract: 一种基于物联网和深度学习的盲道方向识别及瑕疵检测方法,涉及智能交通技术领域,包括:获取盲道图像,图像加雾处理,图像标注,搭建模型,模型训练与测试,模型部署。将深度学习方法与物联网技术相融合,识别盲道的方向以及盲道表面的裂缝与坑洞,用于辅助盲人出行以及盲道维修。能够实时识别盲道方向以及盲道表面的瑕疵,方法具有准确率高,泛化性强的特点,可以将盲道相关信息通过物联网技术,传输至盲人或者盲道维修部门手中,在智能交通,尤其是盲道交通及盲道管理等领域具有较好的应用前景。
-
公开(公告)号:CN117036937A
公开(公告)日:2023-11-10
申请号:CN202310901011.6
申请日:2023-07-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06V10/25 , G06N3/045 , G06N3/0464 , G06N3/08 , G06T7/00
Abstract: 一种基于物联网和深度学习的盲道方向识别及瑕疵检测方法,涉及智能交通技术领域,包括:获取盲道图像,图像加雾处理,图像标注,搭建模型,模型训练与测试,模型部署。将深度学习方法与物联网技术相融合,识别盲道的方向以及盲道表面的裂缝与坑洞,用于辅助盲人出行以及盲道维修。能够实时识别盲道方向以及盲道表面的瑕疵,方法具有准确率高,泛化性强的特点,可以将盲道相关信息通过物联网技术,传输至盲人或者盲道维修部门手中,在智能交通,尤其是盲道交通及盲道管理等领域具有较好的应用前景。
-
公开(公告)号:CN115375677B
公开(公告)日:2023-04-18
申请号:CN202211298772.9
申请日:2022-10-24
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明公开的基于多路径和多尺度特征融合的酒瓶缺陷检测方法及系统,属于工业检测技术领域,包括:获取酒瓶RGB图像;根据RGB图像和训练好的酒瓶缺陷检测模型中,获得酒瓶缺陷检测结果,其中,酒瓶缺陷检测模型包括多个依次连接的残差提取模块,后三个残差提取模块中的每个残差提取模块均依次连接上采样网络、注意力增强块和检测单元,三个上采样网络按照从与最后一个残差提取模块连接的上采样网络到与倒数第三个残差提取模块连接的上采样网络的方向依次连接,每个上采样网络与残差提取模块之间还设置路径增强模块,残差提取模块的输出输入到路径增强模块中,路径增强模块的输出输入到上采样网络中。提高了酒瓶缺陷检测的准确性。
-
-
-
-
-
-
-
-
-