-
公开(公告)号:CN117764988B
公开(公告)日:2024-04-30
申请号:CN202410194597.1
申请日:2024-02-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东山科数字经济研究院有限公司
Abstract: 本发明涉及计算机视觉的应用领域,提供了一种基于异核卷积多感受野网络的道路裂缝检测方法及系统。该方法包括,获取待检测的道路图像;基于待检测的道路图像,采用异核卷积多感受野网络,对道路裂缝进行检测;其中异核卷积多感受野网络包括:异核特征提取网络、加权异核特征融合网络和检测头网络,异核特征提取网络采用多个双分支异核多感受野模块与横纵局部全局特征增强模块级联的方式,提取得到特征图;双分支异核多感受野模块,将输入图像进行分割后,分别输入两路分支依次进行卷积处理和分支特征图融合;加权异核特征融合网络,包括多个双分支异核多感受野模块和多个加权特征拼接模块;检测头网络,根据融合特征图,检测道路缝隙。
-
公开(公告)号:CN117934980B
公开(公告)日:2024-05-31
申请号:CN202410338088.1
申请日:2024-03-25
Applicant: 山东山科数字经济研究院有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/80 , G06T7/00 , G06N3/0464 , G06N3/048 , G06N3/09
Abstract: 本发明涉及工业检测技术领域,公开一种基于注意力监督调整的玻璃容器缺陷检测方法及系统,所述方法包括以下步骤:(1)获取玻璃容器瓶身、瓶颈、瓶口和瓶底的图像,得到玻璃容器图像数据集B;(2)对玻璃容器图像数据集B进行标注,得到图像数据集中缺陷的真实方框,并划分成训练集、验证集和测试集;(3)搭建玻璃容器缺陷检测模型;(4)将玻璃容器图像输入到训练好的玻璃容器缺陷检测模型中,输出缺陷检测结果。所述系统包括玻璃容器图像采集模块和玻璃容器缺陷检测模块。本发明提高了玻璃容器缺陷检测的准确率,且具有较高的鲁棒性。
-
公开(公告)号:CN119810543A
公开(公告)日:2025-04-11
申请号:CN202411893111.X
申请日:2024-12-20
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东山科数字经济研究院有限公司
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/80 , G06V10/766 , G06V10/774 , G06N3/0464 , G06N3/048 , G06N3/096 , G06T7/00
Abstract: 本发明公开了一种基于加权掩码蒸馏的轻量化工业玻璃缺陷检测方法及系统,涉及数字图像处理与目标识别技术领域,获取若干工业玻璃图像并标注缺陷,构建数据集;分别搭建大、小规模目标检测模型异构的骨干特征提取网络,并利用数据集分别进行预训练;以预训练得到的大模型骨干网络为上游教师模型,指导小模型骨干网络进行上游知识蒸馏;分别搭建大、小规模目标检测模型同构的颈部特征融合网络和检测头,再与对应骨干特征提取网络连接,利用数据集分别进行训练;以训练得到的大模型颈部网络为下游教师模型,指导小模型颈部网络进行下游知识蒸馏;构建轻量化小规模目标检测模型,利用该模型实现对待检测工业玻璃图像更高效、更精确的缺陷检测。
-
公开(公告)号:CN119181105A
公开(公告)日:2024-12-24
申请号:CN202411417967.X
申请日:2024-10-11
Applicant: 山东师范大学 , 山东省计算中心(国家超级计算济南中心) , 山东山科数字经济研究院有限公司
IPC: G06V30/412 , G06V30/416 , G06V30/19 , G06V30/18 , G06N3/0464 , G06V10/82
Abstract: 本发明提供了一种基于关联实体检测的表单内容结构化提取方法及系统,包括:对于待内容提取的表单图像,通过预先构建的关联实体检测模型,获得表单中实体所对应的类别及位置信息;其中,所述关联实体检测模型中的层内特征调节模块用于将特征提取层输出的特征经卷积处理后,分别进行全局和局部特征的提取,然后通过将局部和全局特征进行拼接作为下一特征提取层的输入特征;通过对获得的不同层级的特征图进行融合,获得融合特征;基于所述融合特征,通过预设检测头,获得实体所对应的类别及位置信息;基于实体对应的类别及位置信息,通过坐标聚合,获得实体间的关联性;基于所述关联性,确定属于同一行的实体,实现表单内容的结构化提取。
-
公开(公告)号:CN117934980A
公开(公告)日:2024-04-26
申请号:CN202410338088.1
申请日:2024-03-25
Applicant: 山东山科数字经济研究院有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V10/80 , G06T7/00 , G06N3/0464 , G06N3/048 , G06N3/09
Abstract: 本发明涉及工业检测技术领域,公开一种基于注意力监督调整的玻璃容器缺陷检测方法及系统,所述方法包括以下步骤:(1)获取玻璃容器瓶身、瓶颈、瓶口和瓶底的图像,得到玻璃容器图像数据集B;(2)对玻璃容器图像数据集B进行标注,得到图像数据集中缺陷的真实方框,并划分成训练集、验证集和测试集;(3)搭建玻璃容器缺陷检测模型;(4)将玻璃容器图像输入到训练好的玻璃容器缺陷检测模型中,输出缺陷检测结果。所述系统包括玻璃容器图像采集模块和玻璃容器缺陷检测模块。本发明提高了玻璃容器缺陷检测的准确率,且具有较高的鲁棒性。
-
公开(公告)号:CN117764988A
公开(公告)日:2024-03-26
申请号:CN202410194597.1
申请日:2024-02-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东山科数字经济研究院有限公司
Abstract: 本发明涉及计算机视觉的应用领域,提供了一种基于异核卷积多感受野网络的道路裂缝检测方法及系统。该方法包括,获取待检测的道路图像;基于待检测的道路图像,采用异核卷积多感受野网络,对道路裂缝进行检测;其中异核卷积多感受野网络包括:异核特征提取网络、加权异核特征融合网络和检测头网络,异核特征提取网络采用多个双分支异核多感受野模块与横纵局部全局特征增强模块级联的方式,提取得到特征图;双分支异核多感受野模块,将输入图像进行分割后,分别输入两路分支依次进行卷积处理和分支特征图融合;加权异核特征融合网络,包括多个双分支异核多感受野模块和多个加权特征拼接模块;检测头网络,根据融合特征图,检测道路缝隙。
-
公开(公告)号:CN117933831B
公开(公告)日:2024-06-11
申请号:CN202410338056.1
申请日:2024-03-25
Applicant: 山东山科数字经济研究院有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06Q10/0639 , G06Q10/10 , G06F16/33 , G06F16/35 , G06F18/213 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明涉及项目绩效评估的大数据分析领域,公开一种基于机器学习可训练的项目绩效评估方法及系统,属于信息化项目绩效评估评审领域。该方法包括以下步骤:(1)获取目标项目的数据材料,并进行特征要素提取,构建目标项目的实施特征集合;(2)根据特征要素与评估属性进行标签匹配,根据标签匹配结果对特征要素进行分类;(3)利用不同分类的评估准则和绩效制度对项目绩效进行评估,并根据评估结果对项目实施过程中和项目验收的工作表现进行评价打分。该系统包括数据输入模块、特征提取模块、属性分类模块和绩效评估模块。本发明提升了数据收集、数据评估和数据审核等过程中的工作效率,并实现了绩效评估的准确性、全面性和客观性。
-
公开(公告)号:CN117933831A
公开(公告)日:2024-04-26
申请号:CN202410338056.1
申请日:2024-03-25
Applicant: 山东山科数字经济研究院有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06Q10/0639 , G06Q10/10 , G06F16/33 , G06F16/35 , G06F18/213 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明涉及项目绩效评估的大数据分析领域,公开一种基于机器学习可训练的项目绩效评估方法及系统,属于信息化项目绩效评估评审领域。该方法包括以下步骤:(1)获取目标项目的数据材料,并进行特征要素提取,构建目标项目的实施特征集合;(2)根据特征要素与评估属性进行标签匹配,根据标签匹配结果对特征要素进行分类;(3)利用不同分类的评估准则和绩效制度对项目绩效进行评估,并根据评估结果对项目实施过程中和项目验收的工作表现进行评价打分。该系统包括数据输入模块、特征提取模块、属性分类模块和绩效评估模块。本发明提升了数据收集、数据评估和数据审核等过程中的工作效率,并实现了绩效评估的准确性、全面性和客观性。
-
公开(公告)号:CN118154603B
公开(公告)日:2024-07-23
申请号:CN202410578270.4
申请日:2024-05-11
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06T7/00 , G06V10/52 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明属于图像处理技术领域,提供了一种基于级联多层特征融合网络的显示屏缺陷检测方法及系统,液晶显示屏缺陷检测模型包括用于提取图像特征的残差特征提取网络,用于融合图像中浅层细粒度信息和深层语义信息的级联多层特征融合网络,以及用于确定缺陷类别、位置和置信度信息的目标识别网络;设计的残差特征提取模块,利用深度卷积模块和逐点卷积模块有效捕捉图像中的细粒度特征的同时降低模型参数量,提高模型检测速度;在特征提取网络设计特征增强模块,同时考虑液晶显示屏缺陷的细节特征和整体结构,能够提取更重要、更明显的缺陷特征,提高了模型对不同类型缺陷检测的准确性。
-
公开(公告)号:CN110439546A
公开(公告)日:2019-11-12
申请号:CN201910739401.1
申请日:2019-08-12
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本公开公开了一种断层封闭性的确定方法、系统、设备及介质,包括:根据断距内泥岩的单层厚度,和断层上盘与下盘的垂直距离,确定断层带的泥质含量;根据上覆地层的平均密度、地层水的密度和断层的倾角度数,确定断面压力;根据断面压力和成岩时间,确定断层成岩作用;根据断层带的泥质含量和断面压力,确定排替压力;根据断层带的泥质含量、断面压力、断层成岩作用和排替压力,确定断层封闭综合能力值;根据断层封闭综合能力值的分布情况,确定油层和水层的分界值;计算断层带的泥质含量、断面压力、断层成岩作用和排替压力四项指标的乘积;利用断层封闭综合能力分界值和单项指标对断层封闭性进行评估。
-
-
-
-
-
-
-
-
-