处理三维点云的方法、装置及存储介质

    公开(公告)号:CN114241144A

    公开(公告)日:2022-03-25

    申请号:CN202111467249.X

    申请日:2021-12-03

    Abstract: 本申请公开了一种处理三维点云的方法、装置及存储介质。其中,方法包括:至少两个处理模块中的任一处理模块,接收三维点数据集,三维点数据集来自于处理模块之前所有层级的处理模块,分别获取三维点数据集中至少两个空间区域的区域特征数据,聚集至少两个空间区域的区域特征数据得到三维点数据集的特征数据,从而降低了三维点云的计算过程较复杂度,提高了计算速度,若处理模块是处理模型中中间层的处理模块,将三维点数据集的特征数据分别输出至到处理模块之后每一层的处理模块中,若处理模块是处理模型中最后一层处理模块,将三维点数据集的特征数据作为三维点云对应的几何表征,从而不会出现几何信息缺失,提升了三维点云得到的数据准确率。

    基于深度压缩域特征的场景分类方法、系统及设备

    公开(公告)号:CN112991476B

    公开(公告)日:2021-09-28

    申请号:CN202110190015.9

    申请日:2021-02-18

    Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。

    基于深度压缩域特征的场景分类方法、系统及设备

    公开(公告)号:CN112991476A

    公开(公告)日:2021-06-18

    申请号:CN202110190015.9

    申请日:2021-02-18

    Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。

    面向压缩域的视频敏感人物识别方法、系统及设备

    公开(公告)号:CN112990273A

    公开(公告)日:2021-06-18

    申请号:CN202110190037.5

    申请日:2021-02-18

    Abstract: 本发明属于图像识别领域,具体涉及了一种面向压缩域的视频敏感人物识别方法、系统、设备,旨在解决现有的敏感人物识别方法低效和浪费资源的问题。本发明包括:对待检测视频部分解码获取压缩域多模态信息,将压缩域多模态信息进行检测和校准,将校准后的压缩域人脸多模态信息通过训练好的多模态人脸识别网络获取多模态人脸特征,将多模态人脸特征与敏感人脸特征库进行比对,确认是否存在敏感人脸。其中,压缩域人脸多模态信息通过I分支、MV分支和Res分支分别提取不同的特征再进行多模态特征融合得到唯一的多模态人脸特征。本发明只需要进行部分解码就能完成特征提取,解决了现有技术低效和资源浪费的问题,同时保有较高的识别精度。

    基于特征空间变化的蒸馏学习方法、系统、装置

    公开(公告)号:CN110135562B

    公开(公告)日:2020-12-01

    申请号:CN201910360632.1

    申请日:2019-04-30

    Abstract: 本发明属于计算机视觉及机器学习领域,具体涉及了一种基于特征空间变化的蒸馏学习方法、系统、装置,旨在解决学生网络无法学习教师网络全局知识的问题。本发明方法包括:按照蒸馏学习教师网络的参数结构构建对应的学生网络;分别选取预设的网络层,计算每一层的特征空间表示以及特定两个层间的跨层特征空间变化矩阵;计算基于特征空间变化的损失函数,根据真实标签计算分类损失函数;通过两个损失函数的加权将教师网络的特征空间变化作为知识迁移到学生网络中。本发明将教师网络层与层之间的特征空间变化刻画为一种新的知识,从而,使得学生网络在学习层与层之间的特征空间变化时,就学习到整个教师网络全局的知识。

    深度卷积神经网络的压缩方法及系统

    公开(公告)号:CN111612143A

    公开(公告)日:2020-09-01

    申请号:CN202010440475.8

    申请日:2020-05-22

    Abstract: 本发明涉及一种深度卷积神经网络的压缩方法及系统,所述压缩方法包括:根据滤波器重要性选择方式和/或模型压缩率,确定待压缩深度卷积神经网络中不重要的滤波器;对不重要的滤波器施加渐进式稀疏约束,作为正则项加入到网络训练的损失函数中,得到优化损失函数;根据正则项,采用阈值迭代算法及反向传播算法联合求解,得到待压缩深度卷积神经网络的更新参数;基于所述优化损失函数及更新参数,获得具有滤波器稀疏形式的卷积神经网络模型;利用结构化剪枝算法,对所述具有滤波器稀疏形式的卷积神经网络模型进行剪枝,得到网络精度较高的压缩后的卷积神经网络模型。

    基于骨骼关节点分区域分层次的行为识别方法、系统

    公开(公告)号:CN110215216B

    公开(公告)日:2020-08-25

    申请号:CN201910500528.8

    申请日:2019-06-11

    Abstract: 本发明属于计算机视觉领域,具体涉及一种基于骨骼关节点分区域分层次的行为识别方法、系统、装置,旨在为了解决有效提高行为识别准确率同时减少网络层数的问题。本发明方法包括:获取输入视频的各帧图像,从各帧图像中分别提取骨骼关节点;对每一帧图像,将其中所提取的所述骨骼关节点划分至所划分的各人体区域,并通过图卷积操作获取对应的特征表示,得到第一层特征表示集;对每一帧图像,按照所述各人体区域,基于所述第一层特征表示,通过池化、图卷积方法逐层减少关节点数量,直至通过多层聚合得到一个特征向量,并将该特征向量输入到两个全连接层得到行为类别。本发明提高了行为识别的准确率,加快了训练速度与检测速度。

Patent Agency Ranking