一种适用于HEVC的快速帧间模式选择方法

    公开(公告)号:CN105141953B

    公开(公告)日:2018-05-25

    申请号:CN201510464054.8

    申请日:2015-07-31

    Applicant: 华侨大学

    Abstract: 本发明一种适用于HEVC的快速帧间模式选择方法,在帧间编码时,对每个编码树单元,也就是最大编码单元,按模式对应的编码单元尺寸从大到小顺序逐级计算对应的模式的率失真代价,当后一模式的率失真代价大于前一模式的率失真代价时,则结束该编码单元的模式选择,取前一模式为该编码单元的最佳模式;本发明所提出的方法简单易行,能大大降低HEVC帧间编码的计算复杂度。

    一种基于结构特征的HEVC码率控制方法

    公开(公告)号:CN106954077A

    公开(公告)日:2017-07-14

    申请号:CN201710208697.5

    申请日:2017-03-31

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于结构特征的HEVC码率控制方法,1)提取视频的帧图像,计算帧图像的编码树单元的2×2区域降采集特征图;2)基于各编码树单元的降采集特征图,计算当前各编码树单元的结构强度;3)基于当前各编码树单元的结构强度,计算当前帧图像的结构强度;4)基于各编码树单元的结构强度与当前帧图像的结构强度,计算各编码树单元的码率分配比重;5)根据各编码树单元的码率分配比重计算各编码树单元的量化参数。本发明利用编码树单元降采样特征图的结构强度来表征编码树单元的结构强度,很好地反应该编码树单元的感知特性,准确引导目标码率分配,获得更符合人眼特性的编码视频。

    一种适用于HEVC的快速帧间模式选择方法

    公开(公告)号:CN105141953A

    公开(公告)日:2015-12-09

    申请号:CN201510464054.8

    申请日:2015-07-31

    Applicant: 华侨大学

    Abstract: 本发明一种适用于HEVC的快速帧间模式选择方法,在帧间编码时,对每个编码树单元,也就是最大编码单元,按模式对应的编码单元尺寸从大到小顺序逐级计算对应的模式的率失真代价,当后一模式的率失真代价大于前一模式的率失真代价时,则结束该编码单元的模式选择,取前一模式为该编码单元的最佳模式;本发明所提出的方法简单易行,能大大降低HEVC帧间编码的计算复杂度。

    基于分类激活映射自举的路面裂痕分割方法及装置

    公开(公告)号:CN119229130A

    公开(公告)日:2024-12-31

    申请号:CN202411736952.X

    申请日:2024-11-29

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于分类激活映射自举的路面裂痕分割方法及装置,涉及人工智能、机器视觉领域,方法包括:训练基于深度网络的正常与裂痕路面分类模型;利用类激活映射方法生成路面图像的激活映射图,通过高激活阈值筛选出类别高激活掩码并进行增强操作后,加入路面图像训练集;重复上述步骤,直到达到设定条件;基于训练好的正常与裂痕路面分类模型生成待推理的路面图像的激活映射图,通过裂痕掩码阈值获得待推理的路面图像的裂痕掩码,作为裂痕分割结果。本发明利用分类模型与激活映射,寻找类别高激活掩码更新路面图像训练集,不断迭代优化掩码效果,以改善路面裂痕分割效果,无需对裂痕进行像素级的标注,大大降低了标注成本。

    基于类别余弦映射的绝缘子故障检测方法及装置

    公开(公告)号:CN119228788A

    公开(公告)日:2024-12-31

    申请号:CN202411725027.7

    申请日:2024-11-28

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于类别余弦映射的绝缘子故障检测方法及装置,涉及人工智能、机器视觉领域,包括:从真实数据集合与合成数据集合中获取图像数据、故障标签以及类别标签;利用类别余弦偏置编码将类别偏置编码进图像数据,利用特征提取网络提取编码结果中的空间特征;利用类别余弦偏置解码缓解空间特征中的偏置信息以获得类别特征,利用多标签分类器获取类别特征与类别标签的分类损失;利用分割解码器获取空间特征与故障标签的掩码损失;基于分类损失与掩码损失完成模型训练。本发明将正常、故障绝缘子以及合成图像的类别差异通过余弦偏置编码至图像数据中,引导模型理解合成图像与真实场景中的分布差异,最终提升合成数据在实践中的有效性。

    一种面向无监督图像检索的模拟抗污伪标签增强方法

    公开(公告)号:CN117456312B

    公开(公告)日:2024-03-12

    申请号:CN202311779473.1

    申请日:2023-12-22

    Applicant: 华侨大学

    Abstract: 本发明提出一种面向无监督图像检索的模拟抗污伪标签增强方法,涉及计算机视觉领域,包括:利用无监督图像检索模型提取图像数据集中所有图像特征,并通过聚类算法为每张图像分配伪标签;采用伯努利随机分布对图像特征向量随机置零以模拟特征污染,获得随机污染特征向量;基于随机污染特征向量计算随机污染后验类别概率,并进行后验类别概率最大池化以获得抗污染后验类别信息;归一化抗污染后验类别信息获得抗污染后验类别概率,将抗污染后验类别概率与聚类产生的伪标签线性组合,以实现伪标签增强,从而改善无监督图像检索准确性,可广泛应用于图像搜索引擎。

    无监督车辆再辨识模型训练方法、车辆再辨识方法及装置

    公开(公告)号:CN117437604B

    公开(公告)日:2024-03-12

    申请号:CN202311767741.8

    申请日:2023-12-21

    Applicant: 华侨大学

    Abstract: 本发明公开了一种无监督车辆再辨识模型训练方法、车辆再辨识方法及装置,涉及人工智能、机器视觉领域,通过基于深度学习的车辆再辨识模型从无标签车辆图像中学习的车辆图像特征,采用聚类算法进行聚类得到伪标签,并随机选择部分特征数据进行随机放缩,获得随机增强特征;基于随机增强特征计算后验类别概率,并利用随机增强特征与车辆图像特征之间的相似度组合后验类别概率,获得随机增强后验类别概率,利用随机增强后验类别概率赋权伪标签中的非峰值类别概率分布,实现伪标签的动态平滑,得到动态平滑伪标签,改善无监督车辆再辨识训练效果,解决当前无监督车辆再辨识依赖身份伪标签而聚类产生的身份伪标签质量不佳的问题。

Patent Agency Ranking