-
公开(公告)号:CN118334733B
公开(公告)日:2024-09-24
申请号:CN202410757576.6
申请日:2024-06-13
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06V40/16 , G06N3/0464 , G06N3/048 , G06N3/08 , G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于池化正交融合的面部色素斑分类方法及装置,涉及图像识别领域,包括:构建面部色素斑分类模型并训练,得到经训练的面部色素斑分类模型,面部色素斑分类模型中,利用深度骨干网络对色素斑图像进行特征提取,得到特征映射,池化正交融合模块中,先验平均池化分支用于提取特征映射中的空间全局信息,获得具有空间稳定性的先验池化特征,后验可学习池化分支借助可学习权重挖掘特征映射中的空间分布信息,获得空间敏感性的后验可学习池化特征,利用正交融合模块对先验池化特征和后验可学习池化特征进行正交融合,得到正交融合特征并输入到第一全连接层和Softmax函数层,输出预测类别概率。本发明解决散射分布斑点分类难的问题。
-
公开(公告)号:CN118334711B
公开(公告)日:2024-08-27
申请号:CN202410757573.2
申请日:2024-06-13
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06V40/10 , G06N3/0455 , G06N3/0464 , G06T7/70 , G06V10/26 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于服装描述生成的行人性别与年龄识别方法及装置,涉及图像识别领域,包括:构建行人性别与年龄识别模型,通过线性映射层和前a层Transformer块将行人图像处理为识别特征和图像特征,利用人体部位检测模型获取行人图像中的人体部位的位置,并裁剪出各个人体部位图像,利用图像字幕生成模型生成各个人体部位图像对应的服装文字描述,并利用词嵌入模型将服装文字描述映射为服装文字描述向量,将服装文字描述向量输入特征提取模块,提取得到对应的向量特征,将所有向量特征拼接后再连接至识别特征和图像特征后,并依次经过后b层Transformer块、第一全连接层和Softmax函数层,得到识别结果,解决性别与年龄识别技术受观察角度与环境等因素影响较大的问题。
-
公开(公告)号:CN118196731A
公开(公告)日:2024-06-14
申请号:CN202410605567.5
申请日:2024-05-16
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于通道与空间量子注意力学习的车辆再辨识方法及装置,涉及车辆再辨识领域,包括:利用深度网络从车辆图像中提取车辆的特征映射;设计通道量子注意力学习分支和空间量子注意力学习分支,分别对残差模块输出的特征映射学习通道量子注意力掩码和空间量子注意力掩码,并将两种注意力掩码融合为通道‑空间复合量子注意力掩码,用于增强车辆的特征映射,使深度网络能够更全面捕捉特征映射中的重要特征。本发明利用量子叠加与纠缠特性实现车辆注意力学习,能够提高特征学习效果,改善车辆再辨识的准确率,解决了传统机器学习模型难以学习这些复杂的非线性关系的问题。
-
公开(公告)号:CN118334733A
公开(公告)日:2024-07-12
申请号:CN202410757576.6
申请日:2024-06-13
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06V40/16 , G06N3/0464 , G06N3/048 , G06N3/08 , G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于池化正交融合的面部色素斑分类方法及装置,涉及图像识别领域,包括:构建面部色素斑分类模型并训练,得到经训练的面部色素斑分类模型,面部色素斑分类模型中,利用深度骨干网络对色素斑图像进行特征提取,得到特征映射,池化正交融合模块中,先验平均池化分支用于提取特征映射中的空间全局信息,获得具有空间稳定性的先验池化特征,后验可学习池化分支借助可学习权重挖掘特征映射中的空间分布信息,获得空间敏感性的后验可学习池化特征,利用正交融合模块对先验池化特征和后验可学习池化特征进行正交融合,得到正交融合特征并输入到第一全连接层和Softmax函数层,输出预测类别概率。本发明解决散射分布斑点分类难的问题。
-
公开(公告)号:CN118196731B
公开(公告)日:2024-08-16
申请号:CN202410605567.5
申请日:2024-05-16
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于通道与空间量子注意力学习的车辆再辨识方法及装置,涉及车辆再辨识领域,包括:利用深度网络从车辆图像中提取车辆的特征映射;设计通道量子注意力学习分支和空间量子注意力学习分支,分别对残差模块输出的特征映射学习通道量子注意力掩码和空间量子注意力掩码,并将两种注意力掩码融合为通道‑空间复合量子注意力掩码,用于增强车辆的特征映射,使深度网络能够更全面捕捉特征映射中的重要特征。本发明利用量子叠加与纠缠特性实现车辆注意力学习,能够提高特征学习效果,改善车辆再辨识的准确率,解决了传统机器学习模型难以学习这些复杂的非线性关系的问题。
-
公开(公告)号:CN118334711A
公开(公告)日:2024-07-12
申请号:CN202410757573.2
申请日:2024-06-13
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06V40/10 , G06N3/0455 , G06N3/0464 , G06T7/70 , G06V10/26 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于服装描述生成的行人性别与年龄识别方法及装置,涉及图像识别领域,包括:构建行人性别与年龄识别模型,通过线性映射层和前a层Transformer块将行人图像处理为识别特征和图像特征,利用人体部位检测模型获取行人图像中的人体部位的位置,并裁剪出各个人体部位图像,利用图像字幕生成模型生成各个人体部位图像对应的服装文字描述,并利用词嵌入模型将服装文字描述映射为服装文字描述向量,将服装文字描述向量输入特征提取模块,提取得到对应的向量特征,将所有向量特征拼接后再连接至识别特征和图像特征后,并依次经过后b层Transformer块、第一全连接层和Softmax函数层,得到识别结果,解决性别与年龄识别技术受观察角度与环境等因素影响较大的问题。
-
公开(公告)号:CN118196840B
公开(公告)日:2024-08-09
申请号:CN202410610290.5
申请日:2024-05-16
Applicant: 华侨大学
Abstract: 本发明公开了一种基于语义偏好挖掘的行人再辨识方法,涉及人工智能、机器视觉领域,包括:利用预训练的语义分割模型将行人图像处理为语义分割图,将语义分割图空间划分为若干部件语义块,计算不同语义在语义分割图与部件语义块中的比例,根据不同语义的比例对部件语义块分组进行语义对齐,获得各部件语义块分组对应的部件序号;基于部件序号对部件特征分组,利用自注意网络将各部件特征组投影到公共嵌入空间并进行偏好挖掘,继而利用偏好信息对各部件特征组进行自适应聚合,增强行人再辨识准确性。
-
公开(公告)号:CN113949872B
公开(公告)日:2024-06-25
申请号:CN202111320458.1
申请日:2021-11-09
Applicant: 华侨大学
IPC: H04N19/147 , H04N19/70
Abstract: 本发明涉及一种基于3D‑Gradient引导的屏幕内容视频编码码率控制方法,属于视频编码领域。本方法采用3D‑Gradient滤波器同时提取屏幕内容视频序列空域和时域的边缘结构特征以及运动信息,将屏幕内容中空域和时域特征进行融合,获取最终的像素级复杂度因子。通过像素级复杂度因子计算CTU级复杂度因子CF进行CTU级的目标比特分配。利用当前编码帧的参考帧以及重建帧的相似度结合目标比特进行率失真模型的构建,实现目标比特,引导码率控制模型的生成。本发明提出的屏幕内容视频编码码率控制方法能够提高码率控制精度,明显改善重建视频序列的率失真性能,在一定程度上降低视频编码时间复杂度。
-
公开(公告)号:CN117456560B
公开(公告)日:2024-03-29
申请号:CN202311775203.3
申请日:2023-12-22
Applicant: 华侨大学
IPC: G06V40/10 , G06V10/26 , G06V10/44 , G06V10/771 , G06V10/82
Abstract: 本发明公开了一种基于前景感知动态部件学习的行人再辨识方法,涉及人工智能、机器视觉领域,包括:将浅层特征映射解码为前景能量图,利用交叉熵优化前景能量图,使其趋于真实前景标签,再将前景能量图空间划分为若干部件能量块,用各个部件能量块代表相应的浅层特征映射块的当前重要性;结合当前重要性和历史重要性对各浅层特征映射块进行综合重要性计算并排序,根据综合重要性排序优先选择高综合重要性的浅层特征映射块参与行人再辨识模型训练,从而减少来自背景区域的低综合重要性的浅层特征映射块参与行人再辨识模型训练的机会,达到抑制背景区域对行人辨识的干扰,提升行人再辨识准确性,可广泛应用于智慧城市场景中的城市安防系统。
-
公开(公告)号:CN117437604A
公开(公告)日:2024-01-23
申请号:CN202311767741.8
申请日:2023-12-21
Applicant: 华侨大学
IPC: G06V20/54 , G06N3/088 , G06V10/40 , G06V10/74 , G06V10/762 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种无监督车辆再辨识模型训练方法、车辆再辨识方法及装置,涉及人工智能、机器视觉领域,通过基于深度学习的车辆再辨识模型从无标签车辆图像中学习的车辆图像特征,采用聚类算法进行聚类得到伪标签,并随机选择部分特征数据进行随机放缩,获得随机增强特征;基于随机增强特征计算后验类别概率,并利用随机增强特征与车辆图像特征之间的相似度组合后验类别概率,获得随机增强后验类别概率,利用随机增强后验类别概率赋权伪标签中的非峰值类别概率分布,实现伪标签的动态平滑,得到动态平滑伪标签,改善无监督车辆再辨识训练效果,解决当前无监督车辆再辨识依赖身份伪标签而聚类产生的身份伪标签质量不佳的问题。
-
-
-
-
-
-
-
-
-