-
公开(公告)号:CN116994295B
公开(公告)日:2024-02-02
申请号:CN202311256034.2
申请日:2023-09-27
Applicant: 华侨大学
Abstract: 本发明公开了一种基于灰度样本自适应选择门的野生动物类别识别方法,涉及机器视觉技术领域,利用灰度图像作为辅助模态来缓解可见光图像和红外光图像之间的模态差异。具体地说,本发明以可见光图像和灰度图像之间在特征空间中的差异来模拟可见光图像和红外光图像的模态差异,设计一种基于神经网络的自适应选择门模块,从可见光图像和灰度图像的特征差异中学习出灰度图像的重要性,用于合理控制灰度图像参与模型鉴别性训练的程度,解决因白天可见光图像与夜晚红外光图像之间模态跨度变化大,导致计算机对野生动物难以准确识别的问(56)对比文件张典;汪海涛;姜瑛;陈星.基于轻量网络的近红外光和可见光融合的异质人脸识别.小型微型计算机系统.2020,(04),全文.
-
公开(公告)号:CN117456312A
公开(公告)日:2024-01-26
申请号:CN202311779473.1
申请日:2023-12-22
Applicant: 华侨大学
IPC: G06V10/774 , G06V10/762 , G06V10/764 , G06V10/82 , G06F16/583
Abstract: 本发明提出一种面向无监督图像检索的模拟抗污伪标签增强方法,涉及计算机视觉领域,包括:利用无监督图像检索模型提取图像数据集中所有图像特征,并通过聚类算法为每张图像分配伪标签;采用伯努利随机分布对图像特征向量随机置零以模拟特征污染,获得随机污染特征向量;基于随机污染特征向量计算随机污染后验类别概率,并进行后验类别概率最大池化以获得抗污染后验类别信息;归一化抗污染后验类别信息获得抗污染后验类别概率,将抗污染后验类别概率与聚类产生的伪标签线性组合,以实现伪标签增强,从而改善无监督图像检索准确性,可广泛应用于图像搜索引擎。
-
公开(公告)号:CN117333826A
公开(公告)日:2024-01-02
申请号:CN202310947820.0
申请日:2023-07-31
Applicant: 华侨大学
Abstract: 由于具有鉴别性的局部组件信息在整车图像中占比很少,且监控场景复杂多变,缺乏明确组件位置信息,因此空间注意力机制易出现细节信息偏移、丢失等问题。为此,本发明提供一种基于空间与通道注意力之注意力协同的车辆再辨识方法,利用对特征映射空间位置不敏感的通道注意力协同空间注意力学习,获得更好的特征学习效果。首先,本发明利用空间注意力机制和通道注意力机制分别从特征映射中学习空间重要性掩码和通道重要性掩码。其次,本发明设计基于注意力子网的空间重要性掩码和通道重要性掩码协同方法,以生成空间‑通道复合重要性掩码,提升车辆再辨识准确性。本发明可广泛应用于智慧城市、智慧交通以及智慧安防中的智能视频监控系统。
-
公开(公告)号:CN117315516A
公开(公告)日:2023-12-29
申请号:CN202311616489.0
申请日:2023-11-30
Applicant: 华侨大学
IPC: G06V20/17 , G06N3/042 , G06N3/045 , G06N3/08 , G06T7/00 , G06V10/74 , G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于多尺度注意力相似化蒸馏的无人机检测方法及装置,涉及目标检测领域,包括:构建多尺度注意力图生成模块、教师网络及待训练的学生网络,通过多尺度注意力图生成模块分别将教师网络和学生网络的中间层特征映射转换为教师空间注意力信息和学生空间注意力信息,并建立注意力信息相似度优化损失函数,将注意力信息相似度优化损失函数与全局性的后验概率蒸馏函数以及学生网络的无人机目标分类损失函数和目标框回归损失函数结合以建立总损失函数,基于总损失函数对待训练的学生网络进行训练,得到经训练的学生网络;将图像输入经训练的学生网络,得到无人机检测结果,解决现有技术无人机检测准确率低、实时性差的问题。
-
公开(公告)号:CN116612445B
公开(公告)日:2023-10-31
申请号:CN202310891062.5
申请日:2023-07-20
Applicant: 华侨大学
IPC: G06V20/54 , G06V10/762 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/778 , G06V10/82 , G06N3/088
Abstract: 本发明公开了一种基于自适应聚类和困难样本加权的无监督车辆再辨识方法,首先,利用当前聚类参数计算最合适的半径值,提升聚类伪标签对车辆样本噪声的鲁棒性;其次,记忆模块记录所有车辆样本特征向量,利用距离作为车辆样本困难程度加权依据,改善模型对困难车辆样本关注力不足的问题;最后,利用加权困难车辆样本结合对比学习方法训练车辆再辨识模型。本发明可广泛应用于智慧交通和智慧安防中的智能视频监控系统。
-
公开(公告)号:CN115620343A
公开(公告)日:2023-01-17
申请号:CN202211386276.9
申请日:2022-11-07
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明提供一种基于多代理相似度聚合的跨模态行人再辨识方法,用于解决昼夜光照差异大而带来的白天可见光图像与夜晚红外图像匹配困难的问题。因此,本发明为每个类别分配多个可学习的代理,获得多代理相似度,并设计多代理相似度聚合机制,实现跨模态行人再辨识。一方面,本发明为每个类别学习多个代理,可以更好地刻画由于数据跨模态引起的剧烈类内差异;另一方面,本发明设计聚合机制,学习最佳的多代理相似度聚合方式,提升跨模态行人再辨识的准确性。因此,本发明可广泛应用于智慧城市、智慧交通以及智慧安防中的智能视频监控系统。
-
公开(公告)号:CN117456312B
公开(公告)日:2024-03-12
申请号:CN202311779473.1
申请日:2023-12-22
Applicant: 华侨大学
IPC: G06V10/774 , G06V10/762 , G06V10/764 , G06V10/82 , G06F16/583
Abstract: 本发明提出一种面向无监督图像检索的模拟抗污伪标签增强方法,涉及计算机视觉领域,包括:利用无监督图像检索模型提取图像数据集中所有图像特征,并通过聚类算法为每张图像分配伪标签;采用伯努利随机分布对图像特征向量随机置零以模拟特征污染,获得随机污染特征向量;基于随机污染特征向量计算随机污染后验类别概率,并进行后验类别概率最大池化以获得抗污染后验类别信息;归一化抗污染后验类别信息获得抗污染后验类别概率,将抗污染后验类别概率与聚类产生的伪标签线性组合,以实现伪标签增强,从而改善无监督图像检索准确性,可广泛应用于图像搜索引擎。
-
公开(公告)号:CN117437604B
公开(公告)日:2024-03-12
申请号:CN202311767741.8
申请日:2023-12-21
Applicant: 华侨大学
IPC: G06V20/54 , G06N3/088 , G06V10/40 , G06V10/74 , G06V10/762 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种无监督车辆再辨识模型训练方法、车辆再辨识方法及装置,涉及人工智能、机器视觉领域,通过基于深度学习的车辆再辨识模型从无标签车辆图像中学习的车辆图像特征,采用聚类算法进行聚类得到伪标签,并随机选择部分特征数据进行随机放缩,获得随机增强特征;基于随机增强特征计算后验类别概率,并利用随机增强特征与车辆图像特征之间的相似度组合后验类别概率,获得随机增强后验类别概率,利用随机增强后验类别概率赋权伪标签中的非峰值类别概率分布,实现伪标签的动态平滑,得到动态平滑伪标签,改善无监督车辆再辨识训练效果,解决当前无监督车辆再辨识依赖身份伪标签而聚类产生的身份伪标签质量不佳的问题。
-
公开(公告)号:CN117315516B
公开(公告)日:2024-02-27
申请号:CN202311616489.0
申请日:2023-11-30
Applicant: 华侨大学
IPC: G06V20/17 , G06N3/042 , G06N3/045 , G06N3/08 , G06T7/00 , G06V10/74 , G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于多尺度注意力相似化蒸馏的无人机检测方法及装置,涉及目标检测领域,包括:构建多尺度注意力图生成模块、教师网络及待训练的学生网络,通过多尺度注意力图生成模块分别将教师网络和学生网络的中间层特征映射转换为教师空间注意力信息和学生空间注意力信息,并建立注意力信息相似度优化损失函数,将注意力信息相似度优化损失函数与全局性的后验概率蒸馏函数以及学生网络的无人机目标分类损失函数和目标框回归损失函数结合以建立总损失函数,基于总损失函数对待训练的学生网络进行训练,得到经训练的学生网络;将图像输入经训练的学生网络,得到无人机检测结果,解决现有技术无人机检测准确率低、实时性差的问题。
-
公开(公告)号:CN116612445A
公开(公告)日:2023-08-18
申请号:CN202310891062.5
申请日:2023-07-20
Applicant: 华侨大学
IPC: G06V20/54 , G06V10/762 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/778 , G06V10/82 , G06N3/088
Abstract: 本发明公开了一种基于自适应聚类和困难样本加权的无监督车辆再辨识方法,首先,利用当前聚类参数计算最合适的半径值,提升聚类伪标签对车辆样本噪声的鲁棒性;其次,记忆模块记录所有车辆样本特征向量,利用距离作为车辆样本困难程度加权依据,改善模型对困难车辆样本关注力不足的问题;最后,利用加权困难车辆样本结合对比学习方法训练车辆再辨识模型。本发明可广泛应用于智慧交通和智慧安防中的智能视频监控系统。
-
-
-
-
-
-
-
-
-