-
公开(公告)号:CN108733763A
公开(公告)日:2018-11-02
申请号:CN201810338555.5
申请日:2018-04-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种基于微博热门事件计算关键节点的方法,包括:获取历史热门事件的转发数、评论数、点赞数和阅读数,定义热门值,并确定热门临界值;获取历史热门事件的初步关键博主,获取作为初步关键传播时间,建立关键传播时间的计算公式;获取目标事件的转发数、评论数、点赞数和阅读数,若目标事件的热门值达到热门临界值,则计算出目标事件的关键传播时间,获得关键时间点;选取在关键时间点附近发微博的若干博主,获取其中与其它博主关联次数最多的博主,即为目标事件的关键博主。本发明还提供了基于微博热门事件计算关键节点的装置。本发明能够在微博热门事件在不可控地爆发之前,找到推动此事件的关键博主,从而使得事件得以控制。
-
公开(公告)号:CN108647247A
公开(公告)日:2018-10-12
申请号:CN201810338554.0
申请日:2018-04-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明提供了基于改进PageRank算法的微博信息传播关键节点识别方法,步骤包括:1)信息采集;2)确定所述微群内转发次数最高的文本信息;3)获取的文本信息获取使用“@”用户标识的文本信息,该用户为B;4)获取的文本信息计算高频词;5)采集用户B的微博文本信息后与所述高频词比对,确定A微群内的成员的转发次数最高文本信息是否被用户B转发,如确定用户B转发,确定B是否传递给了用户C,从而形成信息的传播路径;6)确定传播路径上的用户所在的微群,从而构建微群关注网络;7)通过WeiboRank算法确定最具影响力的微群。本发明实现微群之间以及群内的中关键节点的发掘,不用建立复杂的数据模型,方便快捷的进行群体发现,具有较高的稳定性。
-
公开(公告)号:CN104866561B
公开(公告)日:2018-09-07
申请号:CN201510255994.6
申请日:2015-05-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种挖掘微博话题趋势发起人的方法,属于数据挖掘领域。首先针对某一话题微博,以天为时间粒度,构造微博量随时间变化的趋势图,获取波峰点和波谷点,确定趋势的时间范围,提取微博高频词代表趋势主要内容,以趋势早期参与微博高频词的数量作为该条微博的内容相关度,降序排序后提取趋势制造者。根据趋势变化,以小时为时间粒度,构造趋势时间范围的微博数量变化图,获取斜率最大的时间范围作为增速最大的时间段,并对微博转发量降序排序,确定趋势推动者。本发明利用微博数据平台,具有高效性、鲁棒性和简洁性等优点,适用于对话题微博趋势发起人方面的分析,在社会舆情监控和信息传播分析等领域具有重要的应用价值。
-
公开(公告)号:CN105824801B
公开(公告)日:2018-06-15
申请号:CN201610150794.9
申请日:2016-03-16
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提供一种基于自动机的实体关系快速抽取方法,包括以下步骤:步骤1,定制规则文件;步骤2,对规则文件中的各个规则进行文法检查,检测规则文件中的各个规则是否满足文法要求,如果满足,则执行步骤3;步骤3,对通过文法检查的所述规则文件中的各个规则进行语义解释;步骤4,将语义解释后的所述规则文件中的各个规则进行解析编译,完成规则向层叠有限状态自动机的转换,得到有限状态自动机;步骤5,使用所述有限状态自动机,对输入的文本数据进行实体属性以及实体关系的抽取,得到最终的实体属性以及实体关系。优点为:能够保证对开放域文本进行快速的实体关系与实体属性抽取。同时,对于特定领域的实体关系可以定制化的进行抽取。
-
公开(公告)号:CN105488092B
公开(公告)日:2018-05-22
申请号:CN201510408490.3
申请日:2015-07-13
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种时间敏感和自适应的子话题在线检测方法及系统。该方法包括:1)对文档流中的每篇文档进行向量化表示;2)对文档进行增量式聚类,并根据随时间衰减的文档权重调整子话题的中心权重;3)当聚类产生的子话题数量或者某个子话题权重占比满足阈值条件,或者子话题满足长尾检测条件时,进行子话题间的合并或者删除无意义的子话题;4)根据每个新子话题的权重已及其内在的文档分布,对新子话题生成摘要并输出展示。该系统包括文档表示模块、增量式聚类模块、新子话题发现模块、摘要生成模块。本发明中历史文档权重随时间衰减,并且基于阈值判断和长尾检测进行子话题数量和内容的动态更新,能够有效提高子话题检测的效率。
-
公开(公告)号:CN104899156B
公开(公告)日:2017-11-14
申请号:CN201510229346.3
申请日:2015-05-07
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F12/06
Abstract: 本发明公开了一种面向大规模社交网络的图数据存储及查询方法,本发明数据存储管理器对收到的图数据采用Key‑Value方式存储,以图数据的顶点ID为Key,以顶点邻域为Value;对每一顶点邻域的数据存储:将与该顶点邻域相连的多条边以时间戳有序存储到固定大小的内存块中,并构成双向链表,将该顶点的属性信息和索引信息存储到一数据结构中。当数据存储管理器收到访问顶点v的访问请求时,数据存储管理器将该顶点v及其k阶邻域传输给请求者;请求者将返回数据缓存在本地,下次查询时,首先检查本地的缓存,如果不存在查询的顶点,则将访问请求发送给所述数据存储管理器。本发明能满足动态更新、适合处理数据稀疏的场景和随机访问。
-
公开(公告)号:CN107153672A
公开(公告)日:2017-09-12
申请号:CN201710171926.0
申请日:2017-03-22
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。
-
公开(公告)号:CN106940732A
公开(公告)日:2017-07-11
申请号:CN201710212983.9
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种面向微博数据的疑似水军发现方法,属于计算机应用技术领域。本发明共分为以下六个步骤,分别为相关微博数据的采集;数据预处理;用户特征提取;构建训练集;训练水军检测模型;预测判别未标注数据。对比现有技术,本发明实现了数据的充分利用,方便快捷的进行群体发现而不用建立复杂的分类检测模型,从而降低了算法的复杂度,并且算法的模块性较高,可以投入大规模数据计算,具有较高的稳定性;本发明除了可以对单一用户进行水军检测,还可以对某一特定事件中的一批用户进行识别,该方法模块性极强,可以稳定适用于大规模数据计算框架下。
-
公开(公告)号:CN104951505A
公开(公告)日:2015-09-30
申请号:CN201510260191.X
申请日:2015-05-20
Applicant: 中国科学院信息工程研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/30598 , G06F17/30283
Abstract: 本发明公开了一种基于图计算技术的大规模数据聚类方法。本方法为:1)从待处理图数据的所有顶点中选取N个顶点作为候选聚类中心;2)设置每一候选聚类中心的簇标签值,然后根据一加权无向图G将候选聚类中心合并,将属于同一聚类簇的候选聚类中心划分到同一集合中;3)候选聚类中心将包含自己当前簇标签值以及权重的消息传递给相邻顶点;收到消息的顶点根据簇标签值将本次迭代收到的所有消息分成不同的类别,然后生成新的消息并在下一迭代时传递给相邻顶点;4)迭代结束后,对于每一顶点,计算具有相同标签类型的边的权重之和,得到每一顶点最后的结果值;将具有相同结果值的顶点聚为一类。本发明节约了时间和存储开销。
-
公开(公告)号:CN104866561A
公开(公告)日:2015-08-26
申请号:CN201510255994.6
申请日:2015-05-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/30867
Abstract: 本发明公开了一种挖掘微博话题趋势发起人的方法,属于数据挖掘领域。首先针对某一话题微博,以天为时间粒度,构造微博量随时间变化的趋势图,获取波峰点和波谷点,确定趋势的时间范围,提取微博高频词代表趋势主要内容,以趋势早期参与微博高频词的数量作为该条微博的内容相关度,降序排序后提取趋势制造者。根据趋势变化,以小时为时间粒度,构造趋势时间范围的微博数量变化图,获取斜率最大的时间范围作为增速最大的时间段,并对微博转发量降序排序,确定趋势推动者。本发明利用微博数据平台,具有高效性、鲁棒性和简洁性等优点,适用于对话题微博趋势发起人方面的分析,在社会舆情监控和信息传播分析等领域具有重要的应用价值。
-
-
-
-
-
-
-
-
-