一种用于人脸识别的深度卷积神经网络的训练方法

    公开(公告)号:CN111985310B

    公开(公告)日:2023-06-30

    申请号:CN202010649598.2

    申请日:2020-07-08

    Abstract: 本发明公开了一种用于人脸识别的深度卷积神经网络的训练方法,包括步骤:1)准备好人脸图像数据集,并划分有训练集和验证集,根据训练集的规模、复杂程度和应达到的人脸识别的性能指标,选择深度卷积神经网络模型的类型、结构、超参数和量级;2)利用模型对训练集输入的人脸图片提取特征,作为步骤3)输入;3)构建损失层,并对本次训练迭代计算损失值;4)将步骤3)计算得到的损失值与预先设定的阈值相比较,判断是停止训练还是计算梯度并更新模型参数;5)模型性能验证以及判断是否停止训练。本发明使得在训练时可以从欧式空间和角度空间两方面出发,用一种多元的作用力约束人脸特征,使深度卷积神经网络模型可以学习到更具区别力和鲁棒性的人脸特征。

    一种基于深度学习的扶梯乘客危险行为识别方法

    公开(公告)号:CN114581843A

    公开(公告)日:2022-06-03

    申请号:CN202210161104.5

    申请日:2022-02-22

    Abstract: 本发明公开了一种基于深度学习的扶梯乘客危险行为识别方法,通过位于扶梯楼层板上方的摄像机拍摄含有乘客的扶梯视频段,使用目标检测、跟踪及关节点提取算法获得骨架序列,对骨架序列进行归一化、插帧处理制作数据集,同时将2S‑AGCN网络进行改进以提高骨架关节点连接的合理性,增强模型拟合能力,以用于对骨架序列进行行为分类,并对训练集进行数据扩增后训练该网络模型,在测试阶段,使用插帧及归一化方法保证数据分布与训练集一致,且根据连续多帧的分类结果决定当前帧乘客的行为类别,最终得到稳定的扶梯乘客危险行为识别结果。本发明可以快速准确的判断扶梯上是否存在乘客出现危险行为,保护乘客的人身安全不受威胁。

    一种基于端到端关键点检测的玻璃绝缘子片定位方法

    公开(公告)号:CN112750125B

    公开(公告)日:2022-04-15

    申请号:CN202110118779.7

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于端到端关键点检测的玻璃绝缘子片定位方法,包括:1)电力巡检玻璃绝缘子实例分割数据集的构建与标注;2)利用数据增强算法进行数据扩充;3)训练得到实例分割模型并将玻璃绝缘子所在区域的最小外接多边形图像切割下来,作为下一步关键点检测的数据集;4)标注关键点检测数据集并做数据扩充;5)设计一个端到端的关键点检测模型,不断调优训练;6)将训练好的实例分割模型和关键点检测模型串联起来工作:将待检测的玻璃绝缘子图片输入训练好的实例分割模型,将分割结果的区域切割下来输入到训练好的关键点检测模型,得到图中各玻璃绝缘子片所在位置关键点的坐标值。本发明可提高玻璃绝缘子片定位的速度和精确度。

    一种平衡的实例分割数据合成方法

    公开(公告)号:CN114066788A

    公开(公告)日:2022-02-18

    申请号:CN202111245120.4

    申请日:2021-10-26

    Abstract: 本发明公开了一种平衡的实例分割数据合成方法,包括:1)使用原始数据集的图像和标签构建对象实例库;2)读取原始数据集中的一个图像和标签,根据标签对这个图像生成前景背景掩模图,根据这个图像的尺寸均匀生成10×10个候选点;3)设定一个粘贴尺寸列表,根据设定的粘贴尺寸列表,将10×10个候选点为中心的区域与前景背景掩模图进行计算,选取不和前景重叠的区域加入粘贴区域;4)通过类别平衡从对象实例库中选取对象,进行缩放后粘贴对象到粘贴区域,并更新标签。本发明使用图像合成的方法实现数据增强,具有更好的适用性和多样性,可以应用于难度更大的实例分割任务,计算量非常少,运算速度快,基本上不会增加训练网络的时间。

    一种基于数据增强和孪生网络的视频目标跟踪方法

    公开(公告)号:CN113888590A

    公开(公告)日:2022-01-04

    申请号:CN202111066330.7

    申请日:2021-09-13

    Abstract: 本发明公开了一种基于数据增强和孪生网络的视频目标跟踪方法,包括步骤:1)设置视频中的跟踪目标模板和待搜索区域;2)利用数据增强模块对跟踪目标进行数据增强得到数据增强后的目标模板;3)使用孪生网络提取数据增强后的目标模板的特征图和提取待搜索区域的特征图;4)利用数据增强后的目标模板的特征图和搜索区域的特征图进行匹配得到响应图;5)获取响应图中响应值最大的位置预测目标位置。本发明利用数据增强模块增加视频中待跟踪目标的多样性后,利用孪生网络对视频序列中的目标进行跟踪,使得在遇到跟踪目标有较大形变、光照变化、背景杂乱等干扰等情况时,仍然能保证优异的性能。

Patent Agency Ranking