-
公开(公告)号:CN101294242A
公开(公告)日:2008-10-29
申请号:CN200810302482.0
申请日:2008-07-01
Applicant: 攀钢集团研究院有限公司 , 攀钢集团攀枝花钢铁研究院有限公司
Abstract: 本发明公开了一种从高铬钒钛磁铁矿中提取多种金属元素的方法。特征在于高铬钒钛磁铁精矿经配料压球干燥后,装入转底炉直接还原,在还原过程中,通过还原温度、还原气氛等工艺参数的调节与控制,获得金属化率90%以上、含残碳0.5~4.5%的金属化球团。将所得金属化球团装入电炉再配加球团加入重量8~35%的含碳还原剂进行冶炼,获取钛渣和钒铬铁水,钒铬铁水在一定氧压下,通过时间和温度控制进行吹炼,获取钒铬渣和半钢。钛渣按现有硫酸法或氯化法工艺处理、钒铬渣按一定工序处理最终提取获得TiO2、V2O5和Cr2O3。
-
公开(公告)号:CN103114179A
公开(公告)日:2013-05-22
申请号:CN201310071222.8
申请日:2013-03-06
Applicant: 攀钢集团攀枝花钢铁研究院有限公司
Abstract: 本发明提供了一种真空循环脱气精炼炉的插入管及其制备方法。所述插入管包括筒状钢结构、砌筑在所述钢结构内壁上的耐火砖以及形成在钢结构外壁上的浇注层,所述浇注层包括上下分布的第一浇注层和第二浇注层,其中,所述第一浇注层在进行真空循环脱气精炼时与钢水接触,并且按重量百分比计,所述第一浇注层含有1%~3%的纳米二氧化锆粉和2%~4%的氧化铝空心球;第二浇注层在进行真空循环脱气精炼时不与钢水接触。本发明的插入管具有组成和高温性能呈梯度变化的浇注层,从而其具有良好的抗热震性能以及更长久的使用寿命。
-
公开(公告)号:CN101914718B
公开(公告)日:2012-03-21
申请号:CN201010271507.2
申请日:2010-09-03
Applicant: 攀钢集团有限公司 , 攀钢集团研究院有限公司 , 攀钢集团攀枝花钢铁研究院有限公司 , 攀钢集团攀枝花钢钒有限公司 , 攀枝花钢城集团有限公司合金分公司
Abstract: 本发明属于冶金领域,涉及一种将钒铁细粉造球进行钢水钒合金化的方法。本发明要解决的技术问题是现有技术中由于钒铁细粉粒度过小,用于钢水钒合金化时钒收率低。解决上述技术问题的技术方案是提供一种将钒铁细粉配加有机粘结剂进行造球,并用于转炉炼钢出钢过程的钢水钒合金化的的方法。造球过程FeV50细粉成球率达到98.8%以上,钒收率可达98.3%以上;此钒铁球用于转炉炼钢出钢过程钢水钒合金化,钒收率达到90%以上。本发明解决了由于钒铁细粉粒度过小,用于钢水钒合金化时大量钒铁细粉被风机抽走而引起钒收率低的问题,充分利用了钒资源,降低了炼钢过程生产成本。
-
公开(公告)号:CN101962698B
公开(公告)日:2012-02-22
申请号:CN200910161504.0
申请日:2009-07-24
Applicant: 攀钢集团攀枝花钢铁研究院有限公司 , 攀钢集团钢铁钒钛股份有限公司
Abstract: 本发明涉及一种半钢转炉炼钢方法,该方法包括在转炉内兑入半钢后,加入造渣剂,进行供氧吹炼,并进行终点控制,其特征在于,该方法还包括向转炉内加入锰矿。本发明的方法既不影响钢铁生产工艺以及生产组织,保证转炉炼钢的脱磷脱碳效果,又能保证终点钢水锰含量的提高。本发明的方法具有能耗低、操作简单、易于控制等特点,减少了炉后合金化时锰铁的用量,降低了转炉炼钢的生产成本,实现了炼钢过程节能降耗。
-
公开(公告)号:CN101575657B
公开(公告)日:2011-06-15
申请号:CN200910147359.0
申请日:2009-06-18
Applicant: 攀钢集团攀枝花钢铁研究院有限公司 , 攀钢集团有限公司 , 攀钢集团钢铁钒钛股份有限公司
IPC: C21C5/32
Abstract: 一种氧气顶吹转炉炼钢的方法,该方法包括将钢原料加到转炉中,通过氧枪向转炉中吹氧气,并在吹氧过程中向转炉中分批加入辅料,其特征在于,所述钢原料含有含钒钛的铁水;所述氧枪的枪位在转炉内钢水液面的上方1.4-2.2米的范围内移动,其中,开吹枪位为1.9-2.1米,吹炼枪位为1.4-1.7米,拉碳枪位为1.4-1.5米;所述辅料包括复合渣、石灰和高镁石灰;以吹入氧气的总量为基准,在吹氧量为0.5-5%时,加入第一批辅料。在本发明的氧气顶吹转炉炼钢的方法适用于由经预处理后P、S含量仍然较高的含钒钛的铁水通过大渣量的方式冶炼对P、S要求高的高级别钢种。本方法能有效地降低攀西地区铁水冶炼的辅料消耗、缩短冶炼时间、提高金属收得率。
-
公开(公告)号:CN101962700A
公开(公告)日:2011-02-02
申请号:CN201010239801.5
申请日:2010-07-29
Applicant: 攀钢集团有限公司 , 攀钢集团研究院有限公司 , 攀钢集团攀枝花钢铁研究院有限公司 , 攀钢集团攀枝花钢钒有限公司
CPC classification number: Y02P10/242
Abstract: 本发明属于冶金领域,具体涉及一种使用半钢冶炼低磷钢水的方法。本发明要解决的技术问题为在保证转炉脱碳效果的前提下降低终点钢水的磷含量以利于生产低磷钢。本发明解决技术问题的技术方案为提供一种使用半钢冶炼低磷钢的方法。该方法的步骤为:将经脱硫提钒后的半钢兑入转炉后,加入第一批炼钢造渣剂转炉内吹炼4~6分钟后进行放渣操作,然后加入第二批造渣剂进行吹炼。采用本发明方法可获得磷含量≤0.006%的终点钢水,转炉脱磷率达到92.5%以上。本发明在不影响炼钢脱磷和脱碳任务的前提下,降低了终点钢水的磷含量,为低磷钢的生产提供了重要的技术支撑。
-
公开(公告)号:CN101914717A
公开(公告)日:2010-12-15
申请号:CN201010247311.X
申请日:2010-08-06
Applicant: 攀钢集团有限公司 , 攀钢集团研究院有限公司 , 攀钢集团攀枝花钢铁研究院有限公司 , 攀钢集团攀枝花钢钒有限公司
Abstract: 本发明属于钢铁冶金领域,特别涉及一种将钒铁细粉用于RH工位,对钢水进行钒合金化的方法。本发明要解决的技术问题是含钒细粉难以简单有效利用的问题。本发明解决上述的目的在于提供一种将粒度为5~15毫米的FeV50细粉用于RH钢水精炼工位对钢水合金化的方法。该方法不仅对炼钢任务和生产组织无影响,而且使粒度为5~15毫米的FeV50细粉资源得到了充分利用。该方法具有操作简单,易于控制,金属钒收率高等特点。为充分有效利用钒资源和降低炼钢过程生产成本提供了新的选择。
-
公开(公告)号:CN101575655B
公开(公告)日:2010-12-08
申请号:CN200910147358.6
申请日:2009-06-18
Applicant: 攀钢集团攀枝花钢铁研究院有限公司 , 攀钢集团有限公司 , 攀钢集团钢铁钒钛股份有限公司
IPC: C21C5/28
Abstract: 本发明提供了一种降低转炉炉底的方法,该方法包括如下步骤:(1)出钢后将转炉内的终渣倒出;(2)向转炉内加入半钢和/或铁水、萤石和复合造渣剂,使用氧气进行滑动吹炼;(3)向转炉内加入高镁石灰和/或终渣调整剂,使用氮气进行吹炼;(4)将转炉内的炉渣倒出。本发明的降低转炉炉底的方法操作简便,不但不影响溅渣护炉的效果而且能够保证复吹效果,定期使用本发明的方法进转炉进行维护,可以保持转炉的稳定健康工作。
-
公开(公告)号:CN101457281A
公开(公告)日:2009-06-17
申请号:CN200910300094.3
申请日:2009-01-07
Applicant: 攀钢集团研究院有限公司 , 攀枝花钢铁(集团)公司 , 攀枝花新钢钒股份有限公司
CPC classification number: Y02P10/242
Abstract: 本发明涉及一种转炉生产超低碳钢过程中RH脱碳处理方法,属于钢铁冶金技术领域。本发明所要解决的技术问题是防止转炉工艺生产超低碳钢过程中RH插入管粘渣。本发明的技术方案是:将超低碳钢RH脱碳处理过程中钢包渣化学成分按重量百分比控制为:SiO25.0~11.0%、CaO 40.0~48.0%、Al2O37.5~15.0%、MgO 7.5~12.0%、FeO=20.0%、MnO=7.0%,其余为Fe2O3、CaF2及微量成分S、P、TiO2等,提高了CaO/Al2O3、(CaO/SiO2)/Al2O3比值,有效地抑制了钢包渣中高熔点相的析出,降低了钢包渣的熔点和粘度,增强了钢包渣的流动性,减轻了RH插入管粘渣,提高了不清渣连续处理炉数。
-
公开(公告)号:CN101457275A
公开(公告)日:2009-06-17
申请号:CN200910300110.9
申请日:2009-01-08
Applicant: 攀钢集团研究院有限公司 , 攀枝花钢铁(集团)公司 , 攀枝花新钢钒股份有限公司
CPC classification number: Y02P10/242
Abstract: 本发明属于钢铁冶金技术领域,具体涉及控制转炉工艺生产铝脱氧钢氮含量的方法,用于防止转炉工艺生产铝脱氧钢增氮的问题。解决本发明技术问题是通过如下技术方案实现控制转炉工艺生产铝脱氧钢氮含量的:在转炉开始造渣时将转炉炉渣碱度CaO/SiO2调整为5~7。通过控制转炉炉渣碱度可提高转炉冶炼过程的脱氮率,脱氮率由50%~70%提高到65%~85%,转炉终点钢水氮含量可控制在15PPm以内。通过碱度控制、加入特殊渣料和连铸开浇前在钢包下口与保护管之间使用带帽沿的密封垫圈密封,实现了LD-LF-SCC工艺铸坯氮含量≤35PPm、LD-LF-RH-BCC工艺铸坯氮含量≤30PPm的稳定控制。
-
-
-
-
-
-
-
-
-