一种低熔点高稳定熔盐储热材料智能筛选方法

    公开(公告)号:CN116013436A

    公开(公告)日:2023-04-25

    申请号:CN202211700380.0

    申请日:2022-12-28

    Abstract: 本发明提供一种能够提高开发效率的低熔点高稳定熔盐储热材料智能筛选方法,包括以下步骤:收集已知的熔盐储热材料信息作为数据建立数据库;对数据进行初筛和归一化,将数据库内数据按比例划分为训练集和测试集;采用训练集构建机器学习预测模型,采用交叉验证评估机器学习预测模型的泛化能力;采用测试集测试机器学习预测模型的精度并以评价指标进行评价;采用机器学习预测模型对熔盐储热材料的熔点和分解温度进行预测。本发明可以用于对未知熔盐储热材料的高通量筛选,与传统的实验‑表征开发手段相比,极大的节约了成本,加快了开发速度,可广泛应用于各种储热/储能材料的设计与开发。

    多变负荷下内嵌算法融合的多目标锅炉燃烧优化控制方法

    公开(公告)号:CN115111601A

    公开(公告)日:2022-09-27

    申请号:CN202210785624.3

    申请日:2022-07-04

    Abstract: 本发明涉及一种多变负荷下内嵌算法融合的多目标锅炉燃烧优化控制方法,所述算法融合为随机森林算法与遗传算法融合构建多目标锅炉燃烧优化控制方法;多目标锅炉燃烧优化控制包括锅炉、风烟系统、DCS控制系统、在线监测系统、算法融合软件和模型预测控制器硬件;在锅炉燃烧优化控制寻优过程中实现减污提效。本发明基于算法融合,实现数据算法优势互补,使预测模型的精确度和稳定性更好,控制系统优化指令的可靠性更好;本发明可以实现锅炉燃烧出口NOx浓度以及热效率的精准预测,为高效低耗燃烧优化调节提供了预报信息;基于算法融合开展多目标锅炉燃烧优化,实现炉膛出口NOX浓度降低15%以上,同时锅炉热效率提高0.2%~0.6%。

    一种颗粒强化二氧化碳吸收剂及其制备方法

    公开(公告)号:CN119588113A

    公开(公告)日:2025-03-11

    申请号:CN202411591375.X

    申请日:2024-11-08

    Applicant: 浙江大学

    Abstract: 本发明提供了一种颗粒强化二氧化碳吸收剂及其制备方法。所述颗粒强化二氧化碳吸收剂的总质量以100%计,该吸收剂的组成包括0.05%‑0.3%的固相,以及99.7%‑99.95%液相。所述固相的制备包括以下步骤:机械拆解退役三元锂离子电池得到电极材料,即黑粉,将黑粉在链式炉中进行焙烧,对焙烧后的黑粉用硫酸进行浸出,将黑粉浸出渣进行干燥,干燥后进行球磨处理,最终得到固体颗粒。所述吸收剂制备方法为将固体颗粒、化学吸收剂以及水按一定比例混合,通过搅拌,超声分散后,使其成为分散、稳定的悬浊液。本发明提供的颗粒强化二氧化碳吸收剂对低浓度CO2具有较优的吸收和解吸动力学性能,同时能够降低解吸能耗,实现对低浓度CO2混合气中CO2高效、低能耗分离。

    一种基于Simulink和Fluent协同的燃烧装置控制方法

    公开(公告)号:CN119512256A

    公开(公告)日:2025-02-25

    申请号:CN202411528604.3

    申请日:2024-10-30

    Applicant: 浙江大学

    Abstract: 本发明提供一种基于Simulink和Fluent协同的燃烧装置控制方法,该方法包括以下步骤:在Fluent中导入燃烧装置mesh文件,初始化计算域并设定时间步长和总步长,开始Fluent求解;当计算收敛或达到设定迭代次数时,由Fluent UDF遍历燃烧装置网格计算平均温度,并将数据发送至Simulink S函数模块的服务端;将温度数据转换为温度时间序列值,计算该温度数据与预设特征温度曲线的差值,输入模糊PID控制器得到天然气入口流量变化量并输出控制参数,通过Simulink S函数模块将天然气入口流量变化量打包发送至Fluent UDF的客户端;据此调整天然气入口流量,从而使Fluent的边界条件获得更新,然后进行下一时间步长的计算,重复求解直至达到总迭代时间。本发明提高燃烧装置控制的准确性。

Patent Agency Ranking