基于特征增强的车辆重识别方法

    公开(公告)号:CN114005096A

    公开(公告)日:2022-02-01

    申请号:CN202111317650.5

    申请日:2021-11-09

    Abstract: 本发明为基于特征增强的车辆重识别方法,该方法以构建具有空间注意力引导的自适应特征擦除模块和多感受野残差注意力模块的基于多注意力引导的特征增强网络,通过多感受野残差注意力在不同大小的感受野下帮助主干网络获得丰富的车辆外观特征,利用空间注意力引导的自适应特征擦除模块有选择性的擦除车辆最显著特征,使多注意力引导的特征增强网络的局部分支能够挖掘潜在局部特征,融合全局分支的全局特征和擦除分支的潜在局部特征完成车辆重识别过程。本发明方法不仅能够克服复杂的环境变化,如光照剧烈变化、障碍物遮挡而造成局部显著信息丢失的问题,而且能够满足在安全监管、智能交通系统中高效、快速的查找目标车辆的需求。

    视频图像序列中人脸微表情识别方法

    公开(公告)号:CN113496217A

    公开(公告)日:2021-10-12

    申请号:CN202110773121.X

    申请日:2021-07-08

    Abstract: 本发明为视频图像序列中人脸微表情识别方法,该识别方法包括以下内容:在微表情视频图像序列预处理之后,根据微表情的实际发生机理划分图像分块并获得微表情的浅层运动信息和深层形状信息融合特征,通过光流的共现关系和AU的发生机制构建自注意力图卷积网络的邻接矩阵A,以分块为节点、以邻接矩阵为边,构建自注意力图卷积网络,最后利用自注意力图卷积网络完成微表情的分类识别。本方法克服了现有微表情识别方法对光照噪声的鲁棒性差,特征信息提取的不充分,对微表情实际发生机理研究不深入而导致的微表情识别率低的缺陷。

    基于双生成对抗网络的两阶段表情动画生成方法

    公开(公告)号:CN111783658A

    公开(公告)日:2020-10-16

    申请号:CN202010621885.2

    申请日:2020-07-01

    Abstract: 本发明为基于双生成对抗网络的两阶段表情动画生成方法,该方法首先在第一阶段中利用表情迁移网络FaceGAN提取目标表情轮廓图中的表情特征,并将其迁移到源人脸,生成第一阶段预测图;第二阶段中利用细节生成网络FineGAN来作为补充丰富第一阶段预测图中的对表情变化贡献比较大的眼睛和嘴巴区域的细节,生成细粒度的第二阶段预测图并合成人脸视频动画,表情迁移网络FaceGAN及细节生成网络FineGAN均采用生成对抗网络实现。本申请提出两阶段生成对抗网络进行表情动画生成,第一阶段进行表情的转换,第二阶段进行图像细节的优化,通过掩模向量提取图像的指定区域,进行着重优化,同时结合局部判别器的使用,使重要部位生成效果更佳。

    一种图像显著性目标检测方法

    公开(公告)号:CN111209918A

    公开(公告)日:2020-05-29

    申请号:CN202010008328.3

    申请日:2020-01-06

    Abstract: 本发明是一种图像显著性目标检测方法,涉及图像分析的区域分割,是基于多图模型先验和短连接网络优化的图像显著性检测方法,该方法是对每张输入图像利用颜色和位置信息,计算KNN图模型和K正则图模型,得到在KNN图模型下的显著图S1和在K正则图模型下的显著图S2,再将KNN图模型和K正则图模型进行像素级别的融合,得到原图像的初始显著图S3,利用短连接网络优化初始显著图S3,获得原图像的最终的显著图Sfinal,完成图像显著性目标检测,克服了图像显著性目标检测的现有技术中存在的显著目标检测不完整、当前景背景颜色相似时算法检测不准确的缺陷。

    对图像进行美学评价的多特征融合方法

    公开(公告)号:CN106778788B

    公开(公告)日:2019-11-12

    申请号:CN201710025626.1

    申请日:2017-01-13

    Abstract: 本发明对图像进行美学评价的多特征融合方法,涉及一般的图像数据处理的图像分析,步骤是:输入彩色RGB图像I,并进行显著区域检测得到主体区域和背景区域;彩色RGB图像I在不同颜色空间的特征向量提取:包括提取色彩调和特征向量,提取构图特征向量,提取颜色特征向量,提取清晰度特征向量,提取纹理特征向量,提取DCT统计特征向量共六类特征向量;将提取的六类特征向量融合后利用SVM分类器将图像按美学分数高低分为两类,实现图像的美学评价,克服了现有技术利用多特征融合方法进行图像美学评价时,存在对于颜色复杂图像的美学评价效果不好,不能很好地适用于各种类型图像美学评价的缺陷。

    一种图像缩放方法
    56.
    发明授权

    公开(公告)号:CN106530232B

    公开(公告)日:2019-09-06

    申请号:CN201610987694.1

    申请日:2016-11-10

    Abstract: 本发明一种图像缩放方法,涉及应用电子设备进行图像缩放的方法,是一种基于阈值与概率的图像快速缩放方法,分为两个过程,A.径向基函数神经网络模型训练过程;B.需要进行缩放的被测试图像的缩放过程。本发明方法使用径向基函数神经网络进行机器学习的方法求阈值,将需要进行缩放的图像分成保护区域与非保护区域,在缩放时使用依概率随机缩放,克服了现有技术无法在保证图像缩放效果的同时又能满足实时的图像缩放速度的缺陷。

    动态人脸表情识别方法
    57.
    发明公开

    公开(公告)号:CN109753950A

    公开(公告)日:2019-05-14

    申请号:CN201910109704.5

    申请日:2019-02-11

    Abstract: 本发明动态人脸表情识别方法,涉及用于识别图形的图像特征或特性的方法,是一种基于几何特征及语义特征的动态人脸表情识别方法,步骤是:动态人脸图像序列的预处理;人脸表情灰度图像的人脸表情帧检测与特征点标注;人脸表情灰度图像上人脸表情三角形区域的标定;人脸表情灰度图像上人脸表情三角形区域的几何特征的提取;人脸表情灰度图像上的语义特征的分析与提取;SVM分类器训练并得到分类结果;完成动态人脸表情的识别。本发明克服了现有技术普遍存在实时性差、易受光照影响、特征维数和时间复杂度高进而影响到人脸表情识别率符合要求的缺陷。

    基于融合类测地线和边界对比的图像显著性检测方法

    公开(公告)号:CN106373126B

    公开(公告)日:2018-09-18

    申请号:CN201610800671.5

    申请日:2016-09-04

    Abstract: 本发明基于融合类测地线和边界对比的图像显著性检测方法,涉及一般的图像数据处理中的图像分析,步骤是,输入彩色图像;超像素分割,包括规则的超像素分割和不规则的超像素分割;计算边界对比图Sc;计算有颜色对比的测地线图Gc和无颜色对比的测地线图Gn,包括预处理、计算邻接矩阵和计算有颜色对比的测地线图Gc和无颜色对比的测地线图Gn;融合三种特征图得到显著图。本发明克服了现有技术无法一致地高亮显著目标的缺陷。

    基于回归模型的金字塔人脸图像超分辨率重建方法

    公开(公告)号:CN108090873A

    公开(公告)日:2018-05-29

    申请号:CN201711381261.2

    申请日:2017-12-20

    Abstract: 本发明基于回归模型的金字塔人脸图像超分辨率重建方法,涉及图像的增强或复原,利用图像具有非局部相似性的特征,对测试集中低分辨率人脸图像在其对应特征图像中搜索重建图像块的相似块,得到所有相似块的位置集合,将训练集中所有低分辨率图像在该位置集合中的人脸图像块作为测试集中的低分辨率人脸图像块对应的低分辨率训练集,利用测试集中的低分辨率人脸图像块对应的特征图像块与训练集中的低分辨率人脸图像块对应的特征图像块之间的距离以及测试集中的低分辨率图像经过插值放大后的人脸图像块对应的特征图像块与训练集中高分辨率人脸图像块对应的特征图像块之间距离之和构建约束条件;克服了现有技术在人脸图像重建过程中存在的诸多缺陷。

Patent Agency Ranking