-
公开(公告)号:CN118115886A
公开(公告)日:2024-05-31
申请号:CN202311816139.9
申请日:2023-12-26
Applicant: 安徽大学
IPC: G06V20/13 , G06V20/10 , G06V10/774 , G06V10/764 , G06V10/771
Abstract: 本发明涉及一种基于物候和光谱特征多作物分类方法,包括:下载Sentinel‑2卫星影像数据,进行预处理,得到影像集;采集和标记地面数据,得到地面数据点集;通过分类规则提取耕地,得到耕地影像集;对提取到的物候特征和光谱特征进行筛选,得到关键特征影像集;建立多作物分类模型,并对多作物分类模型进行精度评估;将目标区域的物候和光谱特征影像输入多作物分类模型,多作物分类模型输出作物分类结果,根据作物分类结果绘制作物分布地图。本发明利用卫星遥感影像和地面点数据,通过分析NDVI近似积分构建分类规则提取耕地,避免其他地物干扰作物分类;最终实现多作物分类,有效解决了传统作物分类技术在应对多种作物时存在的准确性低和效率低的问题。
-
公开(公告)号:CN111832507B
公开(公告)日:2024-04-09
申请号:CN202010702759.X
申请日:2020-07-20
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/774 , G01N21/25
Abstract: 本发明涉及基于麦穗顶部光谱信息的小麦赤霉病遥感识别方法,与现有技术相比解决了尚无基于麦穗顶部进行赤霉病监测的缺陷。本发明包括以下步骤:非成像近地高光谱数据的获取;数据的预处理;敏感特征集的获取;SVM模型的构建;SVM模型的优化;小麦赤霉病遥感识别结果的获得。本发明基于遥感设备垂直角度利用小麦顶部信息对赤霉病进行识别,并通过对特征进行筛选和组合,以及对模型进行优化,实现了单穗尺度上的小麦赤霉病的垂直研究,为实际大区域尺度赤霉病识别提供了更加精准的技术方案。
-
公开(公告)号:CN117649364A
公开(公告)日:2024-03-05
申请号:CN202410126237.8
申请日:2024-01-30
Applicant: 安徽大学
IPC: G06T5/73 , G06T5/60 , G06N3/045 , G06N3/0464 , G06N3/0475 , G06N3/048 , G06N3/094
Abstract: 本发明公开了一种基于改进DeblurGANv2模型的真菌孢子显微图像去模糊方法及装置,该方法包括:获取真菌孢子显微图像数据集;基于改进DeblurGANv2模型构建真菌孢子显微图像去模糊网络模型,所述改进DeblurGANv2模型包括在FPN网络中融入CBAM注意力模块并增加一条自底向上的5层特征增强路径;将真菌孢子显微图像数据集输入真菌孢子显微图像去模糊网络模型对生成器和判别器进行训练,得到训练完成的真菌孢子显微图像去模糊网络模型;基于训练完成的去模糊网络模型中的生成器对待处理的模糊真菌孢子显微图像进行去模糊。本发明有效提高了真菌孢子显微图像去模糊后的图像质量。
-
公开(公告)号:CN117576467A
公开(公告)日:2024-02-20
申请号:CN202311560242.1
申请日:2023-11-22
Applicant: 安徽大学
IPC: G06V10/764 , G06V10/20 , G06V10/82 , G06V10/44 , G06V10/56 , G06V10/77 , G06N3/0464 , G06N3/047 , G06N3/0455 , G06V10/80 , G06N3/08 , G06N3/045
Abstract: 本发明涉及一种融合频率域和空间域信息的农作物病害图像识别方法,与现有技术相比解决了难以在复杂环境下实现农作物病害检测的缺陷。本发明包括以下步骤:农作物病害图像的获取及预处理;双分支病害图像识别模型的构建;双分支病害图像识别模型的训练;待识别农作物病害图像的获取;农作物病害图像识别结果的获得。本发明结合图像频率域信息与空间域信息提出了双分支的深度神经网络用于农作物病害识别,频率分支接受频域信息作为输入用于提取丰富的农作物病害频率分量特征,可变形注意力Transformer分支擅长于表征全局特征并且有选择的关注农作物病害局部区域特征,融合方法MSAF更好的融合农作物病害频率特征和空间特征。
-
公开(公告)号:CN117218537B
公开(公告)日:2024-02-13
申请号:CN202311178242.5
申请日:2023-09-13
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/764 , G06V10/42 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于Transformer和非局部神经网络双分支架构的高光谱图像分类方法,包括:输入高光谱图像H;对输入的高光谱图像H进行双分支处理:将多个立方块Hsp作为空间子网络的输入,取H的光谱信息Hspe作为光谱子网络的输入;得到一维空间特征;得到一维光谱特征;构建多层感知器模块将提取的一维空间特征和一维光谱特征进行融合,得到分类结果。本发明通过对高光谱图像作为研究对象,用双分支策略以在充分保持计算效率的同时减少计算量和节约成本;本发明所提出的空间注意力机制探索中心像素和周围像素的相似性,提高了中心像素识别的准确性,增强了空间提取能力。
-
公开(公告)号:CN111738138B
公开(公告)日:2024-02-02
申请号:CN202010564475.9
申请日:2020-06-19
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/762 , G06V10/764 , G06V10/774
Abstract: 本发明涉及一种耦合气象特征区域尺度的小麦条绣病严重度遥感监测方法,与现有技术相比解决了小麦条锈病遥感监测精度差的缺陷。本发明包括以下步骤:遥感训练数据的获取;遥感训练数据的特征筛选;气象数据的特征筛选;小麦条绣病遥感监测模型的构建;小麦条绣病遥感监测模型的训练;待分析遥感数据的获取和特征提取;小麦条绣病严重度遥感监测结果的获得。本发明实现了区域尺度上小麦条锈病严重度的精确监测。
-
公开(公告)号:CN117333365A
公开(公告)日:2024-01-02
申请号:CN202311270123.2
申请日:2023-09-28
Applicant: 安徽大学
IPC: G06T3/40 , G06T7/10 , G06N3/0464 , G06N3/09
Abstract: 本发明涉及一种基于混合Transformer超分辨率网络的图像超分辨率方法,包括:首先获取图像对作为训练样本,图像对由图像ILR和图像IHR组成;搭建混合Transformer超分辨率网络模型;利用训练样本对混合Transformer超分辨率网络模型进行训练,得到训练后的混合Transformer超分辨率网络模型;将待处理图像作为LR图像导入到训练后的混合Transformer超分辨率网络模型中,混合Transformer超分辨率网络模型输出的结果即为HR图像。本发明通过构建混合Transformer超分辨率网络模型,在参数和性能做出合适权衡;增强了网络的局部信息的提取能力,并且提高网络全局建模的效率,得到更加优秀的超分辨率图像,通过对图像中的全局结构信息局部纹理信息作有针对性的处理,实现了在多种超分辨率任务下的优异表现。
-
公开(公告)号:CN117315459A
公开(公告)日:2023-12-29
申请号:CN202311177199.0
申请日:2023-09-12
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种轻量型卷积神经网络的水稻叶片病害识别方法,与现有技术相比解决了水稻叶片病害识别模型识别效率低的缺陷。本发明包括以下步骤:训练样本的获取;构建水稻叶片病害识别模型;水稻叶片病害识别模型的训练;待识别水稻叶片的获取;水稻叶片病害识别结果的获得。本发明能够实现复杂背景下的水稻病害识别,通过模型的轻量化设计使得其可以加载在移动设备上,方便在野外自然场景中自动水稻叶部病害种类,解决了复杂环境、参数多、CNN模型过大等问题。
-
公开(公告)号:CN117132853A
公开(公告)日:2023-11-28
申请号:CN202310631473.0
申请日:2023-05-31
Applicant: 安徽大学
IPC: G06V10/80 , G01N21/25 , G06V20/10 , G06V10/771 , G06F17/18
Abstract: 本发明涉及一种基于CARS‑Ridge算法融合新型指数的小麦赤霉病识别方法,包括:获得小麦赤霉病冠层高光谱数据;通过CARS、PCA和SPA三种算法对获取的小麦赤霉病冠层高光谱数据进行降维;通过RF、PLSR和Ridge三种算法进行建模,得到9个小麦赤霉病识别模型;通过对9个小麦赤霉病识别模型的结果进行十折交叉验证,确定最优模型;构建两个新型指数;将新型指数与最优模型进行融合,得到最优小麦赤霉病识别模型。本发明通过数据降维并结合新型指数构建评价了高光谱数据在小麦赤霉病识别中的应用潜力,提出了CARS‑Ridge算法和新型指数的开发,确定了最准确的小麦赤霉病识别模型,即最优小麦赤霉病识别模型;大大提高了现有病害反演的精度,克服了小麦赤霉病识别不准确的缺陷。
-
公开(公告)号:CN111767863B
公开(公告)日:2023-10-31
申请号:CN202010616580.2
申请日:2020-07-01
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/764 , G06V10/44 , G06V10/774
Abstract: 本发明涉及一种基于近地高光谱技术冬小麦赤霉病识别方法,与现有技术相比解决了从直立角度识别冬小麦赤霉病严重程度精度低的缺陷。本发明包括以下步骤:高光谱数据的获取;赤霉病病情严重度的计算;原始光谱波段特征的筛选;最优小波特征的筛选;冬小麦麦穗赤霉病识别模型的构建;冬小麦麦穗赤霉病识别模型的训练;冬小麦麦穗赤霉病识别结果的获得。本发明不仅实现了直立角度下对冬小麦赤霉病严重度进行识别,还大大提高了冬小麦赤霉病严重度识别的精度。
-
-
-
-
-
-
-
-
-