一种高光谱异常检测方法
    51.
    发明公开

    公开(公告)号:CN115620128A

    公开(公告)日:2023-01-17

    申请号:CN202211142401.1

    申请日:2022-09-20

    Abstract: 本发明提供高光谱异常检测方法,包括以下步骤:步骤1,构建高光谱图像的线性光谱混合模型;步骤2,构建双空间权重稀疏解混模型,计算各端元在混合像元中的丰度矩阵;步骤3,引入光谱加权因子和基于空间邻域信息的空间加权因子,创建字典空谱低秩分解模型;步骤4,对字典空谱低秩分解模型求解,求得异常矩阵;步骤5,通过异常矩阵,求得重建图像;步骤6,根据高光谱图像和重建图像得到异常目标检测图像。本发明本发明通过引入光谱加权因子和基于空间邻域信息的空间加权因子来充分挖掘高光谱图像的光谱信息和空间信息的相关性,以提升高光谱图像异常检测检测的准确性,本发明的异常检测结果准确率为99.39%。

    一种基于CNN和TRANSFORMER的FPC缺陷分类方法

    公开(公告)号:CN115147643A

    公开(公告)日:2022-10-04

    申请号:CN202210643976.5

    申请日:2022-06-09

    Abstract: 本发明公开了一种基于CNN和TRANSFORMER的FPC缺陷分类方法,该方法以基于CNN和TRANSFORMER设计的CTNet为分类模型,步骤如下:S1.采集目标缺陷图像,对FPC原始图像数据进行预处理;S2.对预处理后的图像进行数据增强处理,扩大图像数据集;S3.对增强后的图像数据集进行人工分类;S4.对人工分类后的图像数据,按比例划分训练集和验证集;S5.模型训练,将划分好的图像训练集送进CTNet网络模型进行训练;S6.对训练好的FPC分类检测模型进行性能评估;S7.参数优化微调,结合S6的评估结果,对模型进行进一步的优化。本发明实现了FPC缺陷的自动分类,具有较好的通用性,分类速度快且对电脑性能要求低,能够大幅度降低了企业的生产成本。

    基于卷积神经网络字典对学习的目标跟踪方法与系统

    公开(公告)号:CN113256685A

    公开(公告)日:2021-08-13

    申请号:CN202110707429.4

    申请日:2021-06-25

    Abstract: 本发明提出一种基于卷积神经网络字典对学习的目标跟踪方法及系统,该方法包括:在第一帧目标图像进行采样处理以生成正候选样本,根据正候选样本训练得到边界框回归模型;在后续帧目标框内的目标图像的邻域内重新进行采样以生成正负候选样本,对卷积神经网络模型的全连接参数进行微调;基于空间距离机制以及卷积神经网络模型获得训练样本的深度特征,基于训练样本的深度特征进行字典对模型学习以获得初始字典对;基于训练样本的特征并进行联合字典对模型学习;通过联合字典对中的原子的线性组合表示候选目标图像样本,以实现目标图像定位跟踪。本发明提出的目标跟踪方法,具有很好的鲁棒性与精确度,可以更好地处理目标外观变化,实现目标跟踪。

    工业环境下基于改进的CenterNet网络目标检测方法

    公开(公告)号:CN113255837A

    公开(公告)日:2021-08-13

    申请号:CN202110723531.3

    申请日:2021-06-29

    Abstract: 本发明公开了工业环境下基于改进的CenterNet网络目标检测方法,包括以下步骤:采集包含待检测目标的若干图像;构建CenterNet网络的训练数据集;对CenterNet网络进行改进,包括利用ResNet‑50代替ResNet‑18的深度残差神经网络,利用训练数据集对CenterNet网络进行训练,获得目标检测模型;利用目标检测模型对工业环境中的待检测目标进行检测,获取目标的位置信息和分类信息。本发明通过使用层数更深的深度残差网络,既保证了目标检测速度,又提高了目标检测精度,特别是增强了对工业环境下的多目标和小目标物体的检测识别能力,且相对于传统算法,普适性更优。

    一种具有目标跟踪功能的监控装置

    公开(公告)号:CN112532932A

    公开(公告)日:2021-03-19

    申请号:CN202011316439.7

    申请日:2020-11-20

    Abstract: 本发明公开了一种具有目标跟踪功能的监控装置,包括:安装座,其上滑动设置有滑架,滑架上设置有角度调节机构;人脸识别模块,设置在安装座上,人脸识别模块上设置有用于面像目标文件输入的输入端,面像目标文件输入后保存在人脸识别模块上的CPU内,还包括用于对图片进行图像处理的图像处理模块以及用于控制角度调节机构动作的模糊控制器,CPU、图像处理模块以及模糊控制器依次连接;伺服控制器,设置在安装座上,伺服控制器分别与角度调节机构和模糊控制器连接;还有摄像头,设置在安装座上,用于全方位的对目标对象进行视频采集,摄像头的输出端与图像处理模块连接,摄像还与所述伺服控制器连接;本发明提供了一种具有目标追踪功能的监控装置。

    一种基于深度学习的水环境智能监测系统及方法

    公开(公告)号:CN112087528A

    公开(公告)日:2020-12-15

    申请号:CN202011046080.6

    申请日:2020-09-29

    Abstract: 本发明公开了一种基于深度学习的水环境智能监测系统及方法,包括水环境监测终端、边缘处理装置和云端管理平台;水环境监测终端包括微型中心处理器一以及与微型中心处理器一电性连接的水面监测摄像头、位置定位模块、无线射频Lora模块、无线多模通信模块一、太阳能电池组模块和数据存储模块一;边缘处理装置包括微型中心处理器二以及与微型中心处理器二电性连接的以太网模块、GPU处理器、无线多模通信模块二和数据存储模块二;云端管理平台包括水污染识别服务器以及与水污染识别服务器电性连接的Web服务器和数据库服务器;本发明能够实现水环境长期监测及污染图像取证,并对监测到的图像数据进行存储和预警。

    一种能量获取型无线传感网络最大化监测频率方法

    公开(公告)号:CN107509231B

    公开(公告)日:2020-11-24

    申请号:CN201710858399.0

    申请日:2017-09-21

    Abstract: 本发明公开一种能量获取型无线传感网络最大化监测频率方法,包括以下步骤:设立虚拟源节点,并建立虚拟源节点与被监测目标节点的连接关系,根据指数加权移动平均预测监测节点获取的能量,设定基于能量获取的监测网络节点间链路权重;监测网络拓扑分解,采用节点分裂操作进行拓扑分解,建立分解后的监测网络;根据分解后的监测网络,依次计算虚拟源节点到接收节点的最大能量流路径并对每条路径进行反向操作,减去路径上节点的监测所需能量值;更新监测网络链路权重;重复以上计算直至不存在最大能量流为止;统计最大能量路径数即为目标监测频率。本发明提高了网络监测频率和能量利用率性能,不仅实现监测频率的最大化,而且有效提高监测网络的吞吐量。

    基于机器视觉和深度学习的目标定位与抓取

    公开(公告)号:CN111230857A

    公开(公告)日:2020-06-05

    申请号:CN201910165083.2

    申请日:2019-03-05

    Abstract: 本发明公开了基于机器视觉和深度学习的目标定位与抓取,属于机器视觉领域,基于机器视觉和深度学习的目标定位与抓取,包括摄像机组、机械臂和安装架,摄像机组包括左摄像机和右摄像机,左摄像机和右摄像机均连接于安装架上端,安装架上端中心处连接有安装筒,安装筒内侧设有辅助角锥,辅助角锥配合有辅助水平测定仪本方案利用光学自准直成像原理,通过LED发光元件和线阵CCD成像技术设计来辅助摄像机组初始状态的的水平调节,确保摄像机组的初始水平度,以便为后续摄像机组的角度调节提供调整精确的参照,基本上消除因摄像机组初始水平度误差对标定精度的影响,同时可进一步提高相关算法的有效性。

    一种44GHZ频率间隔的多波长布里渊光纤激光器

    公开(公告)号:CN105703206B

    公开(公告)日:2018-07-06

    申请号:CN201610001128.9

    申请日:2016-01-05

    Abstract: 本发明公开了一种44GHz频率间隔的多波长布里渊光纤激光器,包括窄线宽半导体激光器、四端口光纤耦合器、第一四端口光环形器、第一单模光纤、第二单模光纤、第二四端口光环形器和掺铒光纤放大器,其中第一四端口光环形器、第一单模光纤、第二单模光纤和第二四端口光环形器共同构成一个四阶布里渊频移器,用作布里渊泵浦的窄线宽激光经过四阶布里渊频移器后产生频率下移44GHz的布里渊斯托克斯光,该布里渊斯托克斯光经掺铒光纤放大器放大后一部分光通过光纤耦合器输出,另一部分光则进入四阶布里渊频移器进行44GHz频率的循环下移,使得该环形腔结构可以产生波长通道频率间隔为44GHz的多波长布里渊激光。

    一种基于布里渊光纤激光器的分布式光纤传感装置

    公开(公告)号:CN105758433B

    公开(公告)日:2018-04-03

    申请号:CN201610115839.9

    申请日:2016-03-02

    Abstract: 一种基于布里渊光纤激光器的分布式光纤传感装置,包括窄线宽泵浦激光器、掺铒光纤放大器、脉冲信号发生器、扰偏器、光隔离器等,利用布里渊光纤激光器的双输出端口输出频率相差约一个布里渊频移的两束光波,一束频率可调的布里渊激光经脉冲调制为泵浦光,另一束则用作连续探测光。可调的布里渊激光输出通过布里渊激光腔的温度控制器来实现。频率可调的脉冲泵浦光与连续探测光在传感光纤中发生布里渊相互作用。该传感系统后端的信号处理与一般布里渊光时域分析系统一样。通过布里渊光纤激光器提供泵浦与探测光,可省去在一般布里渊光时域分析系统里所需的可调微波源及配套的调制器,使整个系统成本和复杂度大大降低,便于系统的光学集成与封装。

Patent Agency Ranking