-
公开(公告)号:CN111221345A
公开(公告)日:2020-06-02
申请号:CN202010076008.1
申请日:2020-01-23
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种基于决策树的飞行器推力故障在线辨识方法,适用于飞行器飞行过程中典型动力系统推力故障在线辨识领域。针对控制系统飞行运动信息(如飞行位置、速度、加速度、转速、姿态角、角速度等)进行数据融合生成,并生成决策树,采用训练好的决策树对主发动机故障进行辨识,能够有效实现对故障类型的实时准确建模判别。考虑飞行器质心运动、扰心运动、结构干扰、气动力及力矩等因素,建立更加真实可信仿真模型,生成可信的数据样本,生成决策树,本发明可对飞行器推力故障进行实时在线辨识,可准确辨识出发动机故障。
-
公开(公告)号:CN111176263A
公开(公告)日:2020-05-19
申请号:CN202010076043.3
申请日:2020-01-23
Applicant: 北京航天自动控制研究所
IPC: G05B23/02
Abstract: 本发明涉及一种基于BP神经网络的飞行器推力故障在线辨识方法,针对控制系统飞行运动信息进行数据融合生成,并训练BP神经网络,采用训练好的BP神经网络对主发动机故障进行辨识,能够有效实现对故障类型的实时准确建模判别。考虑飞行器质心运动、扰心运动、结构干扰、气动力及力矩等因素,建立更加真实可信仿真模型,生成可信的数据样本,对BP神经网络进行训练,本发明可对飞行器推力故障进行实时在线辨识,可准确辨识出哪台发动机故障,以及故障程度。本发明所需计算资源小,可嵌入现有飞行控制计算机,进行飞行过程中的故障实时辨识。发挥控制系统作用,掌握新的核心技术,解决非致命动力故障导致的飞行失利问题。
-
公开(公告)号:CN109615609A
公开(公告)日:2019-04-12
申请号:CN201811361588.8
申请日:2018-11-15
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 一种基于深度学习的焊点瑕疵检测方法,步骤如下:(1)对原始图像数据进行灰度化处理;(2)对灰度化处理后的图像进行预处理,进行滤波处理,消除噪声;(3)对预处理后的图像进行分割处理,将焊点和背景进行区分;(4)将步骤(3)分割处理后的图像进行形态学处理,将相连的焊点进一步分割;(5)对形态学处理后的图像进行最终分割,将相连的焊点处理完全,得到所有的焊点目标;(6)对所有的焊点目标进行瑕疵识别,完成焊点的瑕疵检测。本发明方法实现了电路板焊点的自动识别与瑕疵焊点检测,有助于节约人工成本,且瑕疵识别率高,有助于提升工业生产效率和可靠性。
-
公开(公告)号:CN109484676A
公开(公告)日:2019-03-19
申请号:CN201811528445.1
申请日:2018-12-13
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: B64G1/24
Abstract: 本发明涉及一种垂直起降火箭在线轨迹规划的等效姿态控制处理方法,依靠发动机摆角调整箭体姿态也需要一个响应过程,因此将此调节过程引入在线轨迹规划x,z方向的动力学等式约束中,可以将姿态控制回路间接体现在在线轨迹规划算法中,可以解决姿态控制响应延迟而导致x,z方向推力矢量分量不准确的难题,使得整体控制运动规划效果更佳,有助于提高火箭落地时的位置精度。通过对ux和uz的变化率进行约束,进而能够对姿态角的变化率进行约束,保证了火箭的姿态控制能够被及时响应。当接近飞行结束时,对ux和uz进行终端等式约束,能够使得火箭垂直平稳着陆回收。
-
公开(公告)号:CN109343341A
公开(公告)日:2019-02-15
申请号:CN201811393548.1
申请日:2018-11-21
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 一种基于深度强化学习的运载火箭垂直回收智能控制方法,研究实现运载火箭自主智能控制的方法。主要研究解决利用智能控制实现运载火箭垂直回收姿态控制和轨迹规划问题。对航天事业而言,无论在人工成本的节约上,还是在人工失误的减少上,航天器自主智能化无疑都是具有重大意义的。建立运载火箭垂直回收仿真模型,并建立相应的马尔科夫决策过程,包括状态空间、动作空间、状态转移方程、回报函数,使用神经网络拟合环境和智能体行为间的映射关系,并对其进行训练,使得运载火箭能够使用训练好的神经网络自主可控回收。本项目不仅能为航天飞行器轨道智能规划技术提供技术支撑,同时也能为基于深度强化学习的航天飞行器间攻防对抗提供仿真验证平台。
-
公开(公告)号:CN106774379A
公开(公告)日:2017-05-31
申请号:CN201710137351.0
申请日:2017-03-09
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 一种智能超螺旋强鲁棒姿态控制方法,利用自适应向传播(Back Propagation,BP)神经网络结合超螺旋滑模控制算法,设计针对挠性飞行器的调姿方案。该方案能满足挠性飞行器系统快速响应、强鲁棒性等要求,将提供比标准超螺旋算法更快的收敛速度。同时,该方案实现了参数自适应调节,由高频切换行为导致的抖振被有效的抑制,自适应增益还将解决超调和控制增益选取困难的问题。
-
公开(公告)号:CN104155984B
公开(公告)日:2015-05-20
申请号:CN201410389938.7
申请日:2014-08-08
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种飞行器姿态通道内的控制器及其设计方法,所述控制器包括:频率响应函数为WG(s)的第一频率响应单元,其输入端为控制器的输入端;低通滤波单元,其输入端与第一频率响应单元的输出端相连;减法器,其正向输入端与第一频率响应单元的输出端相连,负向输入端与低通滤波单元的输出端相连,其输出端输出的信号用于控制第一空气舵;频率响应函数为的第二频率响应单元,其输入端与低通滤波单元的输出端相连;乘法器,其输入端与第二频率响应单元的输出端相连,用于将第二频率响应单元输出的信号乘以系数后从其输出端输出,输出的信号用于控制第二空气舵。本发明的控制器在实现姿态通道内的两个空气舵的控制时,设计工作量小。
-
公开(公告)号:CN104155986A
公开(公告)日:2014-11-19
申请号:CN201410392003.4
申请日:2014-08-11
Applicant: 北京航天自动控制研究所
IPC: G05D1/08
Abstract: 本发明公开了一种基于惯性耦合特性的飞行器姿态补偿控制方法,所述方法包括:根据如下公式计算得到滚动通道的滚动舵的舵面偏转角δx;使用所述滚动舵的舵面偏转角δx对所述滚动舵的舵面偏转指令值进行补偿后,得到补偿后的滚动舵的舵面偏转指令值;将补偿后的滚动舵的舵面偏转指令值输入到所述滚动舵的伺服机构,由所述滚动舵的伺服机构相应控制所述飞行器的姿态;其中,公式为:本发明的技术方案中,对于飞行器的一个姿态运动通道,将其他通道对该通道的惯性耦合特性的交联影响,量化为该通道的空气舵的舵面偏转角;从而可以根据量化出的舵面偏转角对飞行器进行补偿控制后,使得对飞行器的控制更为准备,可靠。
-
公开(公告)号:CN104155983A
公开(公告)日:2014-11-19
申请号:CN201410389839.9
申请日:2014-08-08
Applicant: 北京航天自动控制研究所
IPC: G05D1/08
Abstract: 本发明公开了一种飞行器姿态运动通道间气动耦合特性的交联影响评估方法,所述方法包括:确定所述飞行器的偏航通道的气流角;根据确定出的气流角以及耦合强度系数Sβ→γ,评估出所述偏航通道的气流角对所述滚动通道的力矩的耦合特性的交联影响;其中,Sβ→γ根据如下公式计算得到:其中,为所述飞行器的偏航通道的气流角的滚动力矩系数,为所述飞行器的滚动通道的舵面偏转角的滚动力矩系数。本发明的技术方案中,可以根据量化的偏航通道的气流角对滚动通道的力矩的交联影响,对飞行器进行补偿控制后,使得对飞行器的控制更为准确、可靠。
-
-
-
-
-
-
-
-