-
公开(公告)号:CN115728265A
公开(公告)日:2023-03-03
申请号:CN202211547016.5
申请日:2022-12-05
Applicant: 电子科技大学长三角研究院(湖州)
IPC: G01N21/3563 , G01N21/359
Abstract: 本发明公开了一种基于改进PLSR算法的土壤总氮检测方法。该发明在土壤理化性质检测领域有一定的通用性,并针对土壤总氮含量的预测做了一些特殊改进,该专利应用于土壤总氮含量的快速检测。普遍用于土壤中总氮分析的国家标准方法为一种基于实验室分析的化学湿法,不仅分析速度慢、操作复杂、分析成本高、容易造成二次污染,并且很难应用于野外现场分析。针对检测算法问题,首先对光谱数据进行了SG平滑滤波,然后对平滑后的数据进行PLSR建模。基于一种基于改进PLSR算法的土壤总氮检测方法,在检测速度上有明显提升,在检测准确率上也有较好的效果。
-
公开(公告)号:CN115661715A
公开(公告)日:2023-01-31
申请号:CN202211368436.7
申请日:2022-11-03
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明公开了一种基于联合检测跟踪网络的多目标跟踪方法。本发明结合传统的检测和跟踪的算法,两个任务共享特征提取网络。本发明提出了基于代价矩阵的损失函数该损失函数有效的改善了检测任务和Re‑ID任务的不兼容问题。本发明提出了根据目标的偏移距离,对原始特征图进行调整。本发明提出了结合多帧的跟踪线索,通过求和的方式和当前帧的图像一起输入到网络中,有效的改善了检测的效果,提高了算法在部分遮挡场景下的检测效果。
-
公开(公告)号:CN115661461A
公开(公告)日:2023-01-31
申请号:CN202211390419.3
申请日:2022-11-04
Applicant: 电子科技大学长三角研究院(湖州)
IPC: G06V10/26 , G06N3/0464 , G06N3/08 , G06V10/764 , G06V10/77 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于多特征级联全卷积网络的复杂道路场景分割方法。自动车道检测是自动驾驶汽车中的一项经典任务,传统计算机视觉技术可以执行。然而,这种技术缺乏在实现高精度的可靠性,同时在复杂和动态的道路场景中实时检测的背景下保持足够的时间复杂性。深度神经网络已经证明了它们能够在手动标记的数据上训练它们时实现竞争的准确性和时间复杂性。然而,传统算法的效率低下,精度较低。本文提出将UNet网络和改进后的DensNet网络相结合,为复杂道路场景中的车道检测任务提供了一个新的思路。
-
公开(公告)号:CN114241217A
公开(公告)日:2022-03-25
申请号:CN202111412560.4
申请日:2021-11-25
Applicant: 电子科技大学 , 电子科技大学长三角研究院(湖州)
IPC: G06V10/46
Abstract: 本发明属于地面激光雷达点云数据处理技术领域,具体涉及一种基于圆柱特征的树干点云高效提取方法。本发明利用地面激光雷达获取的森林植被内部三维激光点云数据,基于树干的圆柱特征,经历地面点滤波、归一化分层、树干定位和树干提取处理,建立从地面激光雷达森林点云中提取树木树冠以下树干点云的树干点云提取方法。相比现有的树干点云提取方法,本发明能够准确定位树干,并精细提取树干点云,同时,算法效率高,鲁棒性强,适用于森林等大场景中树干点云的提取,能应用于林业资源调查、森林场景重建、森林结构参数提取等诸多领域。
-
公开(公告)号:CN113609312A
公开(公告)日:2021-11-05
申请号:CN202110636515.0
申请日:2021-06-08
Applicant: 电子科技大学 , 电子科技大学长三角研究院(湖州)
IPC: G06F16/387 , G06F16/36 , G06F40/295 , G06K9/62
Abstract: 本发明提供了一种基于特征评估和关键词相似度的地理文本语料标注方法,得到高质量的地理领域标注语料。该方法包括:利用爬虫技术爬取网络文本得到知识库与语料库;对语料库进行预处理,得到清洗过的语料;根据文本中的实体对将知识库和语料库对齐;计算句子特征词;计算词语在地理实体对中的权值;选取权值最大的词作为关系词;利用Word2Vec模型生成词向量;计算句子中关系词与知识库中关系词的相似度;找出相似度最大的关系词并进行语料标注,最终得到标注实体和关系类型的语句。
-
公开(公告)号:CN113591478A
公开(公告)日:2021-11-02
申请号:CN202110636514.6
申请日:2021-06-08
Applicant: 电子科技大学 , 电子科技大学长三角研究院(湖州)
IPC: G06F40/295 , G06F40/211 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明提出了一种基于深度强化学习的远程监督文本实体关系抽取方法,该方法包括:进行数据预处理,通过分词、词向量转化、位置向量构成文本向量;Bi‑LSTM+Attentnion将自然文本编码为含有上下文语义的特征向量;通过实体类型嵌入得到实体类型信息的嵌入表示;再构建出依存树,组合表示为最终的句子表示;选用一个句子注意力机制,得到加权的包表示;通过softmax函数计算得到预测标签;使用强化学习方法在远程监督标注和预测标签中选择一个作为软标签,再使用软标签作为正确标签训练,得到最终的关系抽取结果。
-
-
-
-
-