-
公开(公告)号:CN119854002A
公开(公告)日:2025-04-18
申请号:CN202510008592.X
申请日:2025-01-03
Applicant: 国家计算机网络与信息安全管理中心 , 烟台中科网络技术研究所
IPC: H04L9/40
Abstract: 本发明涉及网络安全技术领域,尤其涉及一种生成式人工智能交互式测评系统及测评方法,包括交互式测评系统以及与所述交互式测评系统连接的三个交互式内容生成平台,其中:第一交互式内容生成平台用于生成测试用例;第二交互式内容生成平台用于进行结果分析及生成报告;第三交互式内容生成平台用于作为被测平台,生成交互式内容;交互式测评系统包括:数据接收模块、策略管理库、评估管理模块、接口管理模块、任务链管理模块和提示模板库。本发明基于交互式内容生成平台,灵活生成安全测试集/进行结果评定,并开展测评工作,将测评合理进行拆解,充分利用现有的知识/经验集,实现高效、灵活的交互式内容生成安全测试。
-
公开(公告)号:CN115309899B
公开(公告)日:2023-05-16
申请号:CN202210949186.X
申请日:2022-08-09
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F18/22 , G06F40/284 , G06N3/0455
Abstract: 本发明公开了一种文本中特定内容识别存储方法及系统,属于文特定词识别的技术领域,其方法包括生成特定词库和规则库;获取待识别的文本集合;提取当前特定文本数据集中的新特定词,得到新特定词集合;将需要训练的词组输入BERT模型;从特定文本中获取疑似新特定词集合,利用BERT模型计算特定词库中各词的特征向量与疑似新特定词集合中各词的特征向量的余弦相似度,并基于计算结果判定新特定词。本发明解决了现有技术中基于预构建模式规则的匹配方式仅局限于特定匹配规则模式,匹配方式不够灵活,结果不够全面,难以及时识别海量新出现的特定词及其变体词,且由于文本中涉及大量错综复杂的词语,容易造成特定词的模糊匹配,导致误识别的问题。
-
公开(公告)号:CN115481588A
公开(公告)日:2022-12-16
申请号:CN202211203464.3
申请日:2022-09-29
Applicant: 山东工商学院 , 烟台中科网络技术研究所
IPC: G06F30/3308 , G06F30/31 , G06F8/34
Abstract: 本发明涉及芯片总线验证技术领域,且公开了一种图形化的总线验证平台,包括库模块以及仿真模块,用于将数据直接编译运行代码输送至仿真模块,还包括图形化模块,所述图形化模块分别与所述库模块以及仿真模块电连接,在使用时,所述图形化模块和所述库模块的信息实现相互转换,且所述图形化模块将从所述库模块中获取的信息以文本的形式发送至仿真模块进行仿真验证;支持图形化界面的同时可以代码编辑,满足各种开发需求、减少了总线验证IP的开发时间,验证人员工作重心转移到测试用例的编写中、平台采用模块化方式搭建,易于扩展。
-
公开(公告)号:CN111753322B
公开(公告)日:2021-10-01
申请号:CN202010635435.9
申请日:2020-07-03
Applicant: 烟台中科网络技术研究所 , 烟台中科数据技术有限公司
Abstract: 本发明公开了一种移动App权限列表自动核验方法,包括S1、获取待测移动App实际的权限列表,转化为向量形式,得到实际权限列表向量;S2、获取待测移动App的隐私协议,通过经训练的深度学习分类模型转化为向量形式,与设定阈值进行比较,得到声明权限列表向量;S3、对比待测移动App的实际权限列表向量跟声明权限列表向量是否一致,若一致,则判定待测移动App“合规”,否则判定待测移动App“不合规”。本发明的移动App权限列表自动核验方法实现了移动APP权限列表自动核验,不需要再通过人工对App隐私协议内容进行阅读审核就能判定该App是否存在违规获取用户个人信息的问题。本发明还公开了一种移动App权限列表自动核验系统。
-
公开(公告)号:CN113343219A
公开(公告)日:2021-09-03
申请号:CN202110606530.0
申请日:2021-05-31
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种自动高效的高风险移动应用程序检测方法,包括S1、获取待测App的SDK列表和权限列表,转化为向量形式,得到列表向量;计算待测App与已知的高风险App之间的相似度,判定为潜在风险App;S2、动态分析进一步判定是否为高风险App,若判定为“是”,将其标记为高风险App;S3、人工审核判定是否是高风险App,若“是”,添加至高风险App库,标记为高风险App。本发明采用以静态分析、动态分析为主,辅助以人工审核的方式,避免了人工审核存在的效率低、成本高、准确率低等问题,实现了高风险App得自动高效识别。
-
公开(公告)号:CN113132383A
公开(公告)日:2021-07-16
申请号:CN202110421317.2
申请日:2021-04-19
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及大数据技术领域。本发明公开了一种网络数据采集系统,该系统包括服务器,服务器包括:任务下发模块,用于创建用户信息获取任务,将用户信息获取任务分配至不同的任务池,计算任务池优先级,根据任务下发规则,得到并传输具有优先级参数的用户信息获取任务;数据解析模块,与任务下发模块数据连接,用于获取来自中间代理服务端的用户信息流量数据,数据解析模块构建报文解析神经网络模型,将待解析报文信息输入训练后报文解析神经网络模型,判断待解析报文信息中是否包括指定用户信息并提取。通过设置任务优先级,优先处理重要的任务,提高任务处理效率。本公开实施例还公开了一种网络数据采集方法。
-
公开(公告)号:CN119514540A
公开(公告)日:2025-02-25
申请号:CN202510088849.7
申请日:2025-01-21
Applicant: 烟台中科网络技术研究所
IPC: G06F40/289 , G06F16/353 , G06F18/23213 , G06F18/22
Abstract: 本申请涉及数据处理技术领域,具体涉及一种面向大模型的内容提取分析方法、装置及系统。所述方法包括:对所述大模型生成的当前文本进行预处理,获取所述当前文本的分词向量;根据所述分词向量的重要性,对所述分词向量进行聚类,获取多个分词类簇中心;根据所述多个分词类簇中心并结合敏感词库,确定所述当前文本是否合规。本申请实施例根据分词向量的重要性对分词向量进行聚类,再将聚类得到的分词类簇中心与敏感词库结合来确定当前文本是否合规,因此能够减少误检或漏检的情况发生,提高检测结果的准确性。
-
公开(公告)号:CN119248643A
公开(公告)日:2025-01-03
申请号:CN202411341205.6
申请日:2024-09-25
Applicant: 烟台中科网络技术研究所
IPC: G06F11/36 , G06N5/04 , G06N3/0455 , G06F18/24 , G06N3/0442
Abstract: 本发明涉及计算机技术领域,尤其涉及一种基于改进BERT的移动应用大模型风险自动评估方法,包括以下步骤:S1:测试准备阶段;S2:基于集成化群控设备模拟点击的交互式自动提问方法,实现移动应用版本大模型的自动化问答全流程;S3:基于集成化群控设备的动静态数据采集引擎,实现测试结果文本数据和图片信息的批量采集;S4:基于改进BERT的风险研判模型,对测试结果进行安全风险判别分类,并依据安全风险评估规则进行评估打分;S5:将评估结果和测试结果截图统一妥善保存,本方法提高了输出结果判别算法的准确性和可靠性,并建立了全面的安全风险评估体系。
-
公开(公告)号:CN118282876B
公开(公告)日:2024-08-30
申请号:CN202410710859.5
申请日:2024-06-04
Applicant: 烟台大学 , 烟台中科网络技术研究所
IPC: H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/104
Abstract: 本发明涉及网络异常检测技术领域,尤其是涉及一种不完备异构以太坊网络的异常节点检测方法及系统。方法,包括获取以太坊交易数据,并构建以太坊交易网络,基于残差注意力机制补全以太坊交易网络中的目标节点的缺失属性特征;基于以太坊交易网络中的交易关系,生成关系交易子图;基于关系交易子图的相关性,生成关系交易子图的特征相似度图、特征传播图、语义图及观察图;通过引入机器学习算法,将以太坊交易网络与图神经网络结合利用图结构学习算法实现对以太坊交易网络中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN118313413B
公开(公告)日:2024-08-13
申请号:CN202410741075.9
申请日:2024-06-11
Applicant: 烟台大学 , 烟台中科网络技术研究所
Abstract: 本发明涉及神经网络模型技术领域,尤其是涉及一种基于异构图神经网络的物联网链路预测方法及系统。所述方法,包括构建异构图,并对异构图进行特征表示;基于异构图构建客户端本地模型,包括利用动态注意力机制的图注意力网络构建客户端本地模型;输入异构图至客户端本地模型,并引入贝叶斯推理对异构图的特征进行线性变换;通过损失函数对输入异构图的客户端本地模型进行损失处理;计算客户端本地模型梯度,并对客户端本地模型梯度执行全局模型聚合,得到全局模型参数;将全局模型参数下发至客户端本地模型。通过本发明的技术方案提高链路预测的准确性和鲁棒性。
-
-
-
-
-
-
-
-
-