-
公开(公告)号:CN107414221B
公开(公告)日:2019-04-30
申请号:CN201710243275.1
申请日:2017-04-14
IPC: B23H5/06
Abstract: 一种三维微纳结构电化学诱导加工方法,属于微纳米结构加工领域。所述的加工方法包括如下步骤:将被加工工件固定于电化学体系中电解池底部,再将电解池固定于X‑Y方向水平位移台上;将微纳米尺寸刀具电极固定于夹具上,再将夹具固定于Z方向位移台上;向电解池中注入电解液,使电解液没过被加工工件;控制微纳米尺寸刀具电极逼近被加工材料;Z方向微动位移台设定为闭环模式,微纳米尺寸刀具电极电化电流作为其闭环信号;微纳米尺寸刀具电极在扫描运动时,根据预加工结构三维形貌实时调制刀具电极的电化学电流,最终在被加工工件表面加工出预定的三维微纳结构。本发明的加工方法属于一次成型,从而大大减少加工复杂度,提高了加工效率。
-
公开(公告)号:CN105347299A
公开(公告)日:2016-02-24
申请号:CN201510877456.0
申请日:2014-08-07
Applicant: 哈尔滨工业大学
Abstract: 采用AFM探针纳米刻划加工复杂三维微纳米结构的方法,属于微纳米结构加工领域。为了解决复杂三维微纳米结构加工问题,所述装置包括AFM、X方向精密工作台、Y方向精密工作台,X方向精密工作台底座固连在Y方向精密工作台的滑块上,X方向定位工作台的滑块进行X方向运动,Y方向精密工作台底座固连在AFM样品台上,Y方向定位工作台的滑块进行Y方向运动。本发明提出的三种方法分别通过对同一套商用AFM以及高精度定位平台系统的不用控制和参数设置,实现采用AFM探针纳米刻划技术加工复杂三维微纳米结构的加工。本发明能够在较低成本下解决复杂三维微纳米结构的加工问题,且方法简单,装置及加工实现成本相对较低。
-
公开(公告)号:CN104528632B
公开(公告)日:2016-02-17
申请号:CN201410813219.3
申请日:2014-12-24
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 本发明公开了一种利用三棱锥微探针轨迹运动加工微结构的装置及方法。所述装置由支座、z向粗动定位台、三维压电位移台、三棱锥微探针、光学显微镜、二维调平台和二维工作台构成,其中:二维工作台固定在支座上,二维调平台固定在二维工作台,三棱锥微探针位于二维调平台上方并与三维压电位移台刚性连接,三维压电位移台与z向粗动定位台连接,光学显微镜固定在支座上,用于观测三棱锥微探针与金属样品间的距离。本发明通过采用几何非对称的三棱锥探针进行圆周公转轨迹运动,可以使得在每一次的旋转切削中刀具的前角不断变化,控制确定的进给方向进行加工,能够在金属样品表面加工得到毛刺较小的微结构。
-
公开(公告)号:CN104140076B
公开(公告)日:2015-12-02
申请号:CN201410385534.0
申请日:2014-08-07
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 本发明公开了1、一种AFM探针相同刻划方向机械加工复杂纳米结构的方法,其特征在于所述方法包括如下步骤:一、被加工样品固定在手动二维调整台的上部,对精密主轴进行调心,并确定AFM探针与精密主轴回转中心的相对位置关系;二、确定AFM探针的刻划方向,对AFM针尖施加加工载荷,移动二维高精度定位平台进行刻划图案的第一条线;三、将施加到AFM探针上的载荷设置为零,旋转精密主轴配合移动二维高精度定位平台使得第一条线的终点与针尖位置重合,并且沿着相同方向刻划时第二条线与第一条线的角度偏差与所需加工结构图案一致,根据第二条线的长度进行刻划;该方法获得了加工结构深度、加工质量一致性好的优势。
-
公开(公告)号:CN104625765A
公开(公告)日:2015-05-20
申请号:CN201410739115.2
申请日:2014-12-08
Applicant: 哈尔滨工业大学
IPC: B23Q1/38
CPC classification number: B23Q1/38
Abstract: 本发明提供了一种高精度微小型空气静压转台。本发明解决了目前常用的高精度微小型空气静压转台组成零件较多,不易实现特别高的精度要求和动平衡,并且整体系统的体积较大,特别是高度尺寸较大的问题;解决了由通常所采用的降低转台整体高度的方式所造成的低稳定性以及低承受倾覆力矩的能力的问题;解决了转台加工生产过程中需加工多个轴套与轴的工作面所造成生产成本问题。它包括:转台机座、锥形气浮轴套、主轴系统和转台电机。本发明在转台生产过程中所需加工的轴套与轴工作面仅为相应的两个锥面,相比于以往的高精度空气静压转台有所减少,降低了生产成本。具有装配简单、精度保持性好等优点,可用于多种加工形式的精密和超精密加工设备上。
-
公开(公告)号:CN104515872A
公开(公告)日:2015-04-15
申请号:CN201410815608.X
申请日:2014-12-24
Applicant: 哈尔滨工业大学
IPC: G01Q60/38
Abstract: 本发明公开了一种利用纳米台阶的频谱测量原子力显微镜针尖半径的方法,通过分析针尖半径对扫描纳米台阶所得测量结果的影响,得出了台阶的频谱与针尖半径的线性对应关系,从而作为针尖半径的评价方法。本发明具有如下优点:1、台阶结构尺寸精确,而且与针尖接触作用的几何模型简单。2、采用频谱分析可以在频域内将一些图像中的干扰信号与有用信号分离,从而单独分析有用的部分,这就降低了误差的产生,使得计算更加准确。
-
公开(公告)号:CN104140076A
公开(公告)日:2014-11-12
申请号:CN201410385534.0
申请日:2014-08-07
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 本发明公开了一种AFM探针相同刻划方向机械加工复杂纳米结构的装置及方法。所述装置包括AFM、手动二维调整台、精密主轴及二维高精度定位平台,其中:手动调整二维台的底部与精密主轴的上端连接,精密主轴的下端与二维高精度定位平台连接,二维高精度定位平台固连在AFM的样品台上。本发明利用原子力显微镜AFM的加工的优势,并且改善了由于AFM探针几何形状不完全对称对加工结果有所影响的问题,实现了AFM探针同方向加工刻划的方法。本发明加工方法简单,无需复杂的加工系统,操作简单,并且可以得到精度达到纳米量级的微纳米结构。本发明实现了AFM探针同方向纳米刻划加工,该方法获得了加工结构深度、加工质量一致性好的优势。
-
公开(公告)号:CN101285747A
公开(公告)日:2008-10-15
申请号:CN200810064383.3
申请日:2008-04-25
Applicant: 哈尔滨工业大学
Abstract: 原位纳米拉伸实验测量检测装置,它涉及一种拉伸实验测量检测装置。本发明解决了现有的机械性能的测量及微观形貌的检测是独立的、分离的两个过程的问题。本发明的步进电机(1)的输出轴与联轴器(2)固接,机架底板(4)上固装有导轨(7),导轨(7)上安装有左车架组(42)和右车架组(43),左右旋丝杠(8)的两端分别与联轴器(2)和轴承座(21)连接,力传感器(18)的左右端面分别与右夹具连接块(14)和力传感器保持架(19)固接,读数装置(44)安装在机架底板(4)上,拉伸测量装置(41)固装在检测装置的工作台(46)上。本发明促进了需要对样品在受力状态下微观形貌变化进行动态观察的研究领域的进一步发展,对纳米复合功能材料的机械性能的测量及微观形貌的检测具有重要的理论意义和良好的应用前景。
-
公开(公告)号:CN1279414C
公开(公告)日:2006-10-11
申请号:CN200410013615.4
申请日:2004-03-15
Applicant: 哈尔滨工业大学
IPC: G05B19/18 , G05B19/408 , G05B15/02
Abstract: 微机械零件三维加工方法,它属于一种超精密加工方法。现有诸多微机械零件的加工方法存在只能加工准三维结构等弊端。本发明两种方法都需结合现有的微机械零件三维加工装置来实现:依次设置扫描探针显微镜等的工作参数,将样品放在三维工作台上,通过控制工作台X、Y向运动开始加工第一个图形;当加工完第一个图形后抬起探针,工作台作二维移动后开始加工下一个图形,直到加工完所有的图形。另一种方法是,三维工作台按预先设置的值在X、Y、Z向移动,一次加工完全部图形后,通过扫描陶管作收缩运动抬起探针,结束加工。本发明方法可以进行真正的三维加工,去除量在纳米量级,对表面的破坏极小,它可以应用于MEMS器件、掩膜和微小模具的制造。
-
公开(公告)号:CN113406166B
公开(公告)日:2023-08-29
申请号:CN202110672098.5
申请日:2021-06-17
IPC: G01N27/30 , G01N27/416 , G01B7/02
Abstract: 一种基于振动模式的电化学检测装置,涉及一种电化学检测装置。滑槽固定座上竖向滑动安装有滑块并且设有紧固螺栓能够紧固定位,压电促动器竖向固定在滑块上,电容固定器固定在压电促动器底部,调距环与电容固定器下端旋接配合,电容式位移传感器插装在电容固定器内部,锁紧螺钉能够锁紧定位,激振压电陶瓷环固定在调距环底部,柔性铰链夹装固定在上固定环与下固定环之间,边缘固定导电片并连接外接导线,上固定环固定在激振压电陶瓷环底部,定位螺钉安装螺母接头与柔性铰链紧固定位,纳米电极探针固定在螺母接头底部。探针逼近样品表面更加精准安全,并且电容式位移传感器与探针的间距调节方便,保证最佳使用性能。
-
-
-
-
-
-
-
-
-